Package weka.clusterers
Class CLOPE
java.lang.Object
weka.clusterers.AbstractClusterer
weka.clusterers.CLOPE
- All Implemented Interfaces:
Serializable
,Cloneable
,Clusterer
,CapabilitiesHandler
,OptionHandler
,RevisionHandler
,TechnicalInformationHandler
Yiling Yang, Xudong Guan, Jinyuan You: CLOPE: a fast and effective clustering algorithm for transactional data. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, 682-687, 2002.
BibTeX:
@inproceedings{Yang2002, author = {Yiling Yang and Xudong Guan and Jinyuan You}, booktitle = {Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining}, pages = {682-687}, publisher = {ACM New York, NY, USA}, title = {CLOPE: a fast and effective clustering algorithm for transactional data}, year = {2002} }Valid options are:
-R <num> Repulsion (default 2.6)
- Version:
- $Revision: 5538 $
- Author:
- Alexander Smirnov (austellus@gmail.com)
- See Also:
-
Field Summary
Fields -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionint
Add instance to best clustervoid
buildClusterer
(Instances data) Generate Clustering via CLOPEint
clusterInstance
(Instance instance) Classifies a given instance.Returns default capabilities of the clusterer.String[]
Gets the current settings of CLOPEdouble
gets the repulsionReturns the revision string.Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.Returns a string describing this DataMining-AlgorithmReturns an enumeration of all the available options..static void
Main method for testing this class.int
Move instance to best clusterint
Returns the number of clusters.Returns the tip text for this propertyvoid
setOptions
(String[] options) Parses a given list of options.void
setRepulsion
(double value) set the repulsiontoString()
return a string describing this clustererMethods inherited from class weka.clusterers.AbstractClusterer
distributionForInstance, forName, makeCopies, makeCopy
-
Field Details
-
clusters
Array of clusters
-
-
Constructor Details
-
CLOPE
public CLOPE()the default constructor
-
-
Method Details
-
numberOfClusters
public int numberOfClusters()Description copied from class:AbstractClusterer
Returns the number of clusters.- Specified by:
numberOfClusters
in interfaceClusterer
- Specified by:
numberOfClusters
in classAbstractClusterer
- Returns:
- the number of clusters generated for a training dataset.
-
listOptions
Description copied from interface:OptionHandler
Returns an enumeration of all the available options..- Specified by:
listOptions
in interfaceOptionHandler
- Returns:
- an enumeration of all available options.
-
setOptions
Parses a given list of options. Valid options are:-R <num> Repulsion (default 2.6)
- Specified by:
setOptions
in interfaceOptionHandler
- Parameters:
options
- the list of options as an array of strings- Throws:
Exception
- if an option is not supported
-
getOptions
Gets the current settings of CLOPE- Specified by:
getOptions
in interfaceOptionHandler
- Returns:
- an array of strings suitable for passing to setOptions()
-
repulsionTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setRepulsion
public void setRepulsion(double value) set the repulsion- Parameters:
value
- the repulsion- Throws:
Exception
- if number of clusters is negative
-
getRepulsion
public double getRepulsion()gets the repulsion- Returns:
- the repulsion
-
getCapabilities
Returns default capabilities of the clusterer.- Specified by:
getCapabilities
in interfaceCapabilitiesHandler
- Specified by:
getCapabilities
in interfaceClusterer
- Overrides:
getCapabilities
in classAbstractClusterer
- Returns:
- the capabilities of this clusterer
- See Also:
-
buildClusterer
Generate Clustering via CLOPE- Specified by:
buildClusterer
in interfaceClusterer
- Specified by:
buildClusterer
in classAbstractClusterer
- Parameters:
instances
- The instances that need to be clustered- Throws:
Exception
- If clustering was not successful
-
AddInstanceToBestCluster
Add instance to best cluster -
MoveInstanceToBestCluster
Move instance to best cluster -
clusterInstance
Classifies a given instance.- Specified by:
clusterInstance
in interfaceClusterer
- Overrides:
clusterInstance
in classAbstractClusterer
- Parameters:
instance
- The instance to be assigned to a cluster- Returns:
- int The number of the assigned cluster as an integer
- Throws:
Exception
- If instance could not be clustered successfully
-
toString
return a string describing this clusterer -
globalInfo
Returns a string describing this DataMining-Algorithm- Returns:
- String Information for the gui-explorer
-
getTechnicalInformation
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformation
in interfaceTechnicalInformationHandler
- Returns:
- the technical information about this class
-
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Overrides:
getRevision
in classAbstractClusterer
- Returns:
- the revision
-
main
Main method for testing this class.- Parameters:
argv
- should contain the following arguments:-t training file [-R repulsion]
-