Visual Servoing Platform version 3.5.0
calibrate-hand-eye.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * Hand-eye calibration example to estimate hand to eye transformation.
33 *
34 * Authors:
35 * Fabien Spindler
36 *
37 *****************************************************************************/
38
46#include <iomanip>
47#include <sstream>
48#include <stdio.h>
49#include <vector>
50
51#include <visp3/core/vpDebug.h>
52#include <visp3/core/vpExponentialMap.h>
53#include <visp3/core/vpIoTools.h>
54#include <visp3/io/vpParseArgv.h>
55#include <visp3/vision/vpHandEyeCalibration.h>
56
57int main()
58{
59#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
60 try {
61 // We want to calibrate the hand-eye extrinsic camera parameters from 6
62 // couple of poses: cMo and wMe
63 const unsigned int N = 6;
64 // Input: six couple of poses used as input in the calibration proces
65 std::vector<vpHomogeneousMatrix> cMo(N); // eye (camera) to object
66 // transformation. The object
67 // frame is attached to the
68 // calibrartion grid
69 std::vector<vpHomogeneousMatrix> wMe(N); // world to hand (end-effector) transformation
70 // Output: Result of the calibration
71 vpHomogeneousMatrix eMc; // hand (end-effector) to eye (camera) transformation
72
73 // Initialize an eMc transformation used to produce the simulated input
74 // transformations cMo and wMe
75 vpTranslationVector etc(0.1, 0.2, 0.3);
77 erc[0] = vpMath::rad(10); // 10 deg
78 erc[1] = vpMath::rad(-10); // -10 deg
79 erc[2] = vpMath::rad(25); // 25 deg
80
81 eMc.buildFrom(etc, erc);
82 std::cout << "Simulated hand-eye transformation: eMc " << std::endl;
83 std::cout << eMc << std::endl;
84 std::cout << "Theta U rotation: " << vpMath::deg(erc[0]) << " " << vpMath::deg(erc[1]) << " " << vpMath::deg(erc[2])
85 << std::endl;
86
87 vpColVector v_c(6); // camera velocity used to produce 6 simulated poses
88 for (unsigned int i = 0; i < N; i++) {
89 v_c = 0;
90 if (i == 0) {
91 // Initialize first poses
92 cMo[0].buildFrom(0, 0, 0.5, 0, 0, 0); // z=0.5 m
93 wMe[0].buildFrom(0, 0, 0, 0, 0, 0); // Id
94 } else if (i == 1)
95 v_c[3] = M_PI/8 ;
96 else if (i == 2)
97 v_c[4] = M_PI/8 ;
98 else if (i == 3)
99 v_c[5] = M_PI/10 ;
100 else if (i == 4)
101 v_c[0] = 0.5;
102 else if (i == 5)
103 v_c[1] = 0.8;
104
105 vpHomogeneousMatrix cMc; // camera displacement
106 cMc = vpExponentialMap::direct(v_c); // Compute the camera displacement
107 // due to the velocity applied to
108 // the camera
109 if (i > 0) {
110 // From the camera displacement cMc, compute the wMe and cMo matrices
111 cMo[i] = cMc.inverse() * cMo[i - 1];
112 wMe[i] = wMe[i - 1] * eMc * cMc * eMc.inverse();
113 }
114 }
115
116 // if (1) {
117 if (1) {
118 for (unsigned int i = 0; i < N; i++) {
120 wMo = wMe[i] * eMc * cMo[i];
121 std::cout << std::endl << "wMo[" << i << "] " << std::endl;
122 std::cout << wMo << std::endl;
123 std::cout << "cMo[" << i << "] " << std::endl;
124 std::cout << cMo[i] << std::endl;
125 std::cout << "wMe[" << i << "] " << std::endl;
126 std::cout << wMe[i] << std::endl;
127 }
128 }
129
130 // Reset the eMc matrix to eye
131 eMc.eye();
132
133 // Compute the eMc hand to eye transformation from six poses
134 // - cMo[6]: camera to object poses as six homogeneous transformations
135 // - wMe[6]: world to hand (end-effector) poses as six homogeneous
136 // transformations
137 int ret = vpHandEyeCalibration::calibrate(cMo, wMe, eMc);
138
139 if (ret == 0) {
140 std::cout << std::endl << "** Hand-eye calibration succeed" << std::endl;
141 std::cout << std::endl << "** Hand-eye (eMc) transformation estimated:" << std::endl;
142 std::cout << eMc << std::endl;
143 std::cout << "** Corresponding pose vector: " << vpPoseVector(eMc).t() << std::endl;
144 eMc.extract(erc);
145 std::cout << std::endl << "** Translation [m]: " << eMc[0][3] << " " << eMc[1][3] << " " << eMc[2][3] << std::endl;
146 std::cout << "** Rotation (theta-u representation) [rad]: " << erc.t() << std::endl;
147 std::cout << "** Rotation (theta-u representation) [deg]: " << vpMath::deg(erc[0]) << " " << vpMath::deg(erc[1]) << " " << vpMath::deg(erc[2]) << std::endl;
148 vpQuaternionVector quaternion(eMc.getRotationMatrix());
149 std::cout << "** Rotation (quaternion representation) [rad]: " << quaternion.t() << std::endl;
150 }
151 else {
152 std::cout << std::endl << "** Hand-eye calibration failed" << std::endl;
153 std::cout << std::endl << "Check your input data and ensure they are covering the half sphere over the chessboard." << std::endl;
154 std::cout << std::endl << "See https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-calibration-extrinsic.html" << std::endl;
155 }
156
157 return EXIT_SUCCESS;
158 } catch (const vpException &e) {
159 std::cout << "Catch an exception: " << e << std::endl;
160 return EXIT_FAILURE;
161 }
162#else
163 std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
164 return EXIT_SUCCESS;
165#endif
166}
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
error that can be emited by ViSP classes.
Definition: vpException.h:72
static vpHomogeneousMatrix direct(const vpColVector &v)
static int calibrate(const std::vector< vpHomogeneousMatrix > &cMo, const std::vector< vpHomogeneousMatrix > &rMe, vpHomogeneousMatrix &eMc)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpRotationMatrix getRotationMatrix() const
vpHomogeneousMatrix inverse() const
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
void extract(vpRotationMatrix &R) const
static double rad(double deg)
Definition: vpMath.h:110
static double deg(double rad)
Definition: vpMath.h:103
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:152
vpRowVector t() const
Implementation of a rotation vector as quaternion angle minimal representation.
vpRowVector t() const
Implementation of a rotation vector as axis-angle minimal representation.
Class that consider the case of a translation vector.