Visual Servoing Platform version 3.5.0
servoAfma62DhalfCamVelocity.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * tests the control law
33 * eye-in-hand control
34 * velocity computed in the camera frame
35 *
36 * Authors:
37 * Nicolas Melchior
38 *
39 *****************************************************************************/
62#include <cmath> // std::fabs
63#include <limits> // numeric_limits
64#include <stdlib.h>
65#include <visp3/core/vpConfig.h>
66#include <visp3/core/vpDebug.h> // Debug trace
67#if (defined(VISP_HAVE_AFMA6) && defined(VISP_HAVE_DC1394))
68
69#include <visp3/core/vpDisplay.h>
70#include <visp3/core/vpImage.h>
71#include <visp3/core/vpImagePoint.h>
72#include <visp3/gui/vpDisplayGTK.h>
73#include <visp3/gui/vpDisplayOpenCV.h>
74#include <visp3/gui/vpDisplayX.h>
75#include <visp3/io/vpImageIo.h>
76#include <visp3/sensor/vp1394TwoGrabber.h>
77
78#include <visp3/core/vpHomogeneousMatrix.h>
79#include <visp3/core/vpLine.h>
80#include <visp3/core/vpMath.h>
81#include <visp3/vision/vpPose.h>
82#include <visp3/visual_features/vpFeatureBuilder.h>
83#include <visp3/visual_features/vpFeatureDepth.h>
84#include <visp3/visual_features/vpFeatureLine.h>
85#include <visp3/visual_features/vpFeaturePoint.h>
86#include <visp3/visual_features/vpGenericFeature.h>
87#include <visp3/vs/vpServo.h>
88
89#include <visp3/robot/vpRobotAfma6.h>
90
91// Exception
92#include <visp3/core/vpException.h>
93#include <visp3/vs/vpServoDisplay.h>
94
95#include <visp3/blob/vpDot2.h>
96#include <visp3/core/vpHomogeneousMatrix.h>
97#include <visp3/core/vpPoint.h>
98
99int main()
100{
101 try {
103
107 g.open(I);
108
109 g.acquire(I);
110
111#ifdef VISP_HAVE_X11
112 vpDisplayX display(I, 100, 100, "Current image");
113#elif defined(VISP_HAVE_OPENCV)
114 vpDisplayOpenCV display(I, 100, 100, "Current image");
115#elif defined(VISP_HAVE_GTK)
116 vpDisplayGTK display(I, 100, 100, "Current image");
117#endif
118
121
122 vpServo task;
123
124 vpRobotAfma6 robot;
125 // robot.move("zero.pos") ;
126
128 // Update camera parameters
129 robot.getCameraParameters(cam, I);
130
131 std::cout << std::endl;
132 std::cout << "-------------------------------------------------------" << std::endl;
133 std::cout << " Test program for vpServo " << std::endl;
134 std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
135 std::cout << " Simulation " << std::endl;
136 std::cout << " task : servo a line " << std::endl;
137 std::cout << "-------------------------------------------------------" << std::endl;
138 std::cout << std::endl;
139
140 int nbline = 4;
141 int nbpoint = 4;
142
143 vpTRACE("sets the desired position of the visual feature ");
144 vpPoint pointd[nbpoint]; // position of the fours corners
145 vpPoint pointcd; // position of the center of the square
147
148 double L = 0.05;
149 pointd[0].setWorldCoordinates(L, -L, 0);
150 pointd[1].setWorldCoordinates(L, L, 0);
151 pointd[2].setWorldCoordinates(-L, L, 0);
152 pointd[3].setWorldCoordinates(-L, -L, 0);
153
154 // The coordinates in the object frame of the point used as a feature ie
155 // the center of the square
156 pointcd.setWorldCoordinates(0, 0, 0);
157
158 // The desired homogeneous matrix.
159 vpHomogeneousMatrix cMod(0, 0, 0.4, 0, 0, vpMath::rad(10));
160
161 pointd[0].project(cMod);
162 pointd[1].project(cMod);
163 pointd[2].project(cMod);
164 pointd[3].project(cMod);
165
166 pointcd.project(cMod);
167
168 vpFeatureBuilder::create(pd, pointcd);
169
170 vpTRACE("Initialization of the tracking");
171 vpMeLine line[nbline];
172 vpPoint point[nbpoint];
173 int i;
174
175 vpMe me;
176 me.setRange(10);
177 me.setPointsToTrack(100);
178 me.setThreshold(50000);
179 me.setSampleStep(10);
180
181 // Initialize the tracking. Define the four lines to track
182 for (i = 0; i < nbline; i++) {
183 line[i].setMe(&me);
184
185 line[i].initTracking(I);
186 line[i].track(I);
187 }
188
189 // Compute the position of the four corners. The goal is to
190 // compute the pose
191 vpImagePoint ip;
192 for (i = 0; i < nbline; i++) {
193 double x = 0, y = 0;
194
195 if (!vpMeLine::intersection(line[i % nbline], line[(i + 1) % nbline], ip)) {
196 exit(-1);
197 }
198
200
201 point[i].set_x(x);
202 point[i].set_y(y);
203 }
204
205 // Compute the pose cMo
206 vpPose pose;
207 pose.clearPoint();
209
210 point[0].setWorldCoordinates(L, -L, 0);
211 point[1].setWorldCoordinates(L, L, 0);
212 point[2].setWorldCoordinates(-L, L, 0);
213 point[3].setWorldCoordinates(-L, -L, 0);
214
215 for (i = 0; i < nbline; i++) {
216 pose.addPoint(point[i]); // and added to the pose computation point list
217 }
218
219 pose.computePose(vpPose::LAGRANGE, cMo);
221
222 vpTRACE("sets the current position of the visual feature ");
223
224 // The first features are the position in the camera frame x and y of the
225 // square center
226 vpPoint pointc; // The current position of the center of the square
227 double xc = (point[0].get_x() + point[2].get_x()) / 2;
228 double yc = (point[0].get_y() + point[2].get_y()) / 2;
229 pointc.set_x(xc);
230 pointc.set_y(yc);
232 pointc.project(cMo);
233 vpFeatureBuilder::create(p, pointc);
234
235 // The second feature is the depth of the current square center relative
236 // to the depth of the desired square center.
237 vpFeatureDepth logZ;
238 logZ.buildFrom(pointc.get_x(), pointc.get_y(), pointc.get_Z(), log(pointc.get_Z() / pointcd.get_Z()));
239
240 // The last three features are the rotations thetau between the current
241 // pose and the desired pose.
243 cdMc = cMod * cMo.inverse();
245 tu.buildFrom(cdMc);
246
247 vpTRACE("define the task");
248 vpTRACE("\t we want an eye-in-hand control law");
249 vpTRACE("\t robot is controlled in the camera frame");
252
253 vpTRACE("\t we want to see a point on a point..");
254 std::cout << std::endl;
255 task.addFeature(p, pd);
256 task.addFeature(logZ);
257 task.addFeature(tu);
258
259 vpTRACE("\t set the gain");
260 task.setLambda(0.2);
261
262 vpTRACE("Display task information ");
263 task.print();
264
266
267 unsigned int iter = 0;
268 vpTRACE("\t loop");
269 vpColVector v;
271 double lambda_av = 0.05;
272 double alpha = 0.05;
273 double beta = 3;
274
275 for (;;) {
276 std::cout << "---------------------------------------------" << iter << std::endl;
277
278 try {
279 g.acquire(I);
281
282 pose.clearPoint();
283
284 // Track the lines and find the current position of the corners
285 for (i = 0; i < nbline; i++) {
286 line[i].track(I);
287
288 line[i].display(I, vpColor::green);
289
290 double x = 0, y = 0;
291
292 if (!vpMeLine::intersection(line[i % nbline], line[(i + 1) % nbline], ip)) {
293 exit(-1);
294 }
295
297
298 point[i].set_x(x);
299 point[i].set_y(y);
300
301 pose.addPoint(point[i]);
302 }
303
304 // Compute the pose
306
307 // Update the two first features x and y (position of the square
308 // center)
309 xc = (point[0].get_x() + point[2].get_x()) / 2;
310 yc = (point[0].get_y() + point[2].get_y()) / 2;
311 pointc.set_x(xc);
312 pointc.set_y(yc);
313 pointc.project(cMo);
314 vpFeatureBuilder::create(p, pointc);
315 // Print the current and the desired position of the center of the
316 // square Print the desired position of the four corners
317 p.display(cam, I, vpColor::green);
318 pd.display(cam, I, vpColor::red);
319 for (i = 0; i < nbpoint; i++)
320 pointd[i].display(I, cam, vpColor::red);
321
322 // Update the second feature
323 logZ.buildFrom(pointc.get_x(), pointc.get_y(), pointc.get_Z(), log(pointc.get_Z() / pointcd.get_Z()));
324
325 // Update the last three features
326 cdMc = cMod * cMo.inverse();
327 tu.buildFrom(cdMc);
328
329 // Adaptive gain
330 double gain;
331 {
332 if (std::fabs(alpha) <= std::numeric_limits<double>::epsilon())
333 gain = lambda_av;
334 else {
335 gain = alpha * exp(-beta * (task.getError()).sumSquare()) + lambda_av;
336 }
337 }
338
339 task.setLambda(gain);
340
341 v = task.computeControlLaw();
342
344 std::cout << v.sumSquare() << std::endl;
345 if (iter == 0)
347 if (v.sumSquare() > 0.5) {
348 v = 0;
350 robot.stopMotion();
352 }
353
355
356 } catch (...) {
357 v = 0;
359 robot.stopMotion();
360 exit(1);
361 }
362
363 vpTRACE("\t\t || s - s* || = %f ", (task.getError()).sumSquare());
364 iter++;
365 }
366
367 vpTRACE("Display task information ");
368 task.print();
369 return EXIT_SUCCESS;
370 }
371 catch (const vpException &e) {
372 std::cout << "Test failed with exception: " << e << std::endl;
373 return EXIT_FAILURE;
374 }
375}
376
377#else
378int main()
379{
380 std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
381 return EXIT_SUCCESS;
382}
383
384#endif
Class for firewire ieee1394 video devices using libdc1394-2.x api.
void acquire(vpImage< unsigned char > &I)
void setVideoMode(vp1394TwoVideoModeType videomode)
void setFramerate(vp1394TwoFramerateType fps)
void open(vpImage< unsigned char > &I)
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
double sumSquare() const
static const vpColor red
Definition: vpColor.h:217
static const vpColor green
Definition: vpColor.h:220
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:135
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:135
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
error that can be emited by ViSP classes.
Definition: vpException.h:72
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 3D point visual feature which is composed by one parameters that is that defin...
void buildFrom(double x, double y, double Z, double LogZoverZstar)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void display(const vpCameraParameters &cam, const vpImage< unsigned char > &I, const vpColor &color=vpColor::green, unsigned int thickness=1) const
Class that defines a 3D visual feature from a axis/angle parametrization that represent the rotatio...
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:88
static double rad(double deg)
Definition: vpMath.h:110
Class that tracks in an image a line moving edges.
Definition: vpMeLine.h:152
void display(const vpImage< unsigned char > &I, vpColor col)
Definition: vpMeLine.cpp:224
void track(const vpImage< unsigned char > &Im)
Definition: vpMeLine.cpp:746
static bool intersection(const vpMeLine &line1, const vpMeLine &line2, vpImagePoint &ip)
Definition: vpMeLine.cpp:990
void initTracking(const vpImage< unsigned char > &I)
Definition: vpMeLine.cpp:236
void setMe(vpMe *p_me)
Definition: vpMeTracker.h:173
Definition: vpMe.h:61
void setSampleStep(const double &s)
Definition: vpMe.h:278
void setRange(const unsigned int &r)
Definition: vpMe.h:271
void setPointsToTrack(const int &n)
Definition: vpMe.h:264
void setThreshold(const double &t)
Definition: vpMe.h:300
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:82
void set_x(double x)
Set the point x coordinate in the image plane.
Definition: vpPoint.cpp:511
double get_y() const
Get the point y coordinate in the image plane.
Definition: vpPoint.cpp:472
double get_x() const
Get the point x coordinate in the image plane.
Definition: vpPoint.cpp:470
double get_Z() const
Get the point cZ coordinate in the camera frame.
Definition: vpPoint.cpp:456
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:113
void set_y(double y)
Set the point y coordinate in the image plane.
Definition: vpPoint.cpp:513
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:81
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:149
@ VIRTUAL_VS
Definition: vpPose.h:95
@ LAGRANGE
Definition: vpPose.h:85
void clearPoint()
Definition: vpPose.cpp:134
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=NULL)
Definition: vpPose.cpp:374
Control of Irisa's gantry robot named Afma6.
Definition: vpRobotAfma6.h:212
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
@ CAMERA_FRAME
Definition: vpRobot.h:82
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:66
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:201
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
void setLambda(double c)
Definition: vpServo.h:404
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
vpColVector getError() const
Definition: vpServo.h:278
@ PSEUDO_INVERSE
Definition: vpServo.h:202
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
@ CURRENT
Definition: vpServo.h:182
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
#define vpTRACE
Definition: vpDebug.h:416