Visual Servoing Platform version 3.5.0
servoViper850FourPointsKinect.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * tests the control law
33 * eye-in-hand control
34 * velocity computed in the camera frame
35 *
36 * Authors:
37 * Fabien Spindler
38 *
39 *****************************************************************************/
50#include <visp3/core/vpConfig.h>
51#include <visp3/core/vpDebug.h> // Debug trace
52
53#include <fstream>
54#include <iostream>
55#include <sstream>
56#include <stdio.h>
57#include <stdlib.h>
58
59#if (defined(VISP_HAVE_VIPER850) && defined(VISP_HAVE_LIBFREENECT_AND_DEPENDENCIES))
60
61#include <visp3/core/vpDisplay.h>
62#include <visp3/core/vpHomogeneousMatrix.h>
63#include <visp3/core/vpImage.h>
64#include <visp3/core/vpImageConvert.h>
65#include <visp3/core/vpIoTools.h>
66#include <visp3/core/vpMath.h>
67#include <visp3/core/vpPoint.h>
68#include <visp3/gui/vpDisplayGTK.h>
69#include <visp3/gui/vpDisplayOpenCV.h>
70#include <visp3/gui/vpDisplayX.h>
71#include <visp3/robot/vpRobotViper850.h>
72#include <visp3/sensor/vp1394TwoGrabber.h>
73#include <visp3/sensor/vpKinect.h>
74#include <visp3/vision/vpPose.h>
75#include <visp3/visual_features/vpFeatureBuilder.h>
76#include <visp3/visual_features/vpFeaturePoint.h>
77#include <visp3/vs/vpServo.h>
78
79// Exception
80#include <visp3/core/vpException.h>
81#include <visp3/vs/vpServoDisplay.h>
82
83#include <visp3/blob/vpDot2.h>
84#define L 0.05 // to deal with a 10cm by 10cm square
85
111void compute_pose(vpPoint point[], vpDot2 dot[], int ndot, vpCameraParameters cam, vpHomogeneousMatrix &cMo,
112 vpTranslationVector &cto, vpRxyzVector &cro, bool init)
113{
114 vpHomogeneousMatrix cMo_dementhon; // computed pose with dementhon
115 vpHomogeneousMatrix cMo_lagrange; // computed pose with dementhon
117 vpPose pose;
118 vpImagePoint cog;
119 for (int i = 0; i < ndot; i++) {
120
121 double x = 0, y = 0;
122 cog = dot[i].getCog();
124 y); // pixel to meter conversion
125 point[i].set_x(x); // projection perspective p
126 point[i].set_y(y);
127 pose.addPoint(point[i]);
128 }
129
130 if (init == true) {
131 pose.computePose(vpPose::DEMENTHON, cMo_dementhon);
132 // Compute and return the residual expressed in meter for the pose matrix
133 // 'cMo'
134 double residual_dementhon = pose.computeResidual(cMo_dementhon);
135 pose.computePose(vpPose::LAGRANGE, cMo_lagrange);
136 double residual_lagrange = pose.computeResidual(cMo_lagrange);
137
138 // Select the best pose to initialize the lowe pose computation
139 if (residual_lagrange < residual_dementhon)
140 cMo = cMo_lagrange;
141 else
142 cMo = cMo_dementhon;
143
144 } else { // init = false; use of the previous pose to initialise LOWE
145 cRo.buildFrom(cro);
146 cMo.buildFrom(cto, cRo);
147 }
148 pose.computePose(vpPose::LOWE, cMo);
149 cMo.extract(cto);
150 cMo.extract(cRo);
151 cro.buildFrom(cRo);
152}
153
154int main()
155{
156 // Log file creation in /tmp/$USERNAME/log.dat
157 // This file contains by line:
158 // - the 6 computed joint velocities (m/s, rad/s) to achieve the task
159 // - the 6 mesured joint velocities (m/s, rad/s)
160 // - the 6 mesured joint positions (m, rad)
161 // - the 8 values of s - s*
162 std::string username;
163 // Get the user login name
164 vpIoTools::getUserName(username);
165
166 // Create a log filename to save velocities...
167 std::string logdirname;
168 logdirname = "/tmp/" + username;
169
170 // Test if the output path exist. If no try to create it
171 if (vpIoTools::checkDirectory(logdirname) == false) {
172 try {
173 // Create the dirname
174 vpIoTools::makeDirectory(logdirname);
175 } catch (...) {
176 std::cerr << std::endl << "ERROR:" << std::endl;
177 std::cerr << " Cannot create " << logdirname << std::endl;
178 return (-1);
179 }
180 }
181 std::string logfilename;
182 logfilename = logdirname + "/log.dat";
183
184 // Open the log file name
185 std::ofstream flog(logfilename.c_str());
186
187 try {
188 vpRobotViper850 robot;
189 // Load the end-effector to camera frame transformation obtained
190 // using a camera intrinsic model with distortion
193
194 vpServo task;
195
197 vpImage<vpRGBa> Irgb;
198 int i;
199
200#ifdef VISP_HAVE_LIBFREENECT_OLD
201 // This is the way to initialize Freenect with an old version of
202 // libfreenect packages under ubuntu lucid 10.04
203 Freenect::Freenect<vpKinect> freenect;
204 vpKinect &kinect = freenect.createDevice(0);
205#else
206 Freenect::Freenect freenect;
207 vpKinect &kinect = freenect.createDevice<vpKinect>(0);
208#endif
209
211 kinect.getRGB(Irgb);
213
214#ifdef VISP_HAVE_X11
215 vpDisplayX display(I, 100, 100, "Current image");
216#elif defined(VISP_HAVE_OPENCV)
217 vpDisplayOpenCV display(I, 100, 100, "Current image");
218#elif defined(VISP_HAVE_GTK)
219 vpDisplayGTK display(I, 100, 100, "Current image");
220#endif
221
224
225 std::cout << std::endl;
226 std::cout << "-------------------------------------------------------" << std::endl;
227 std::cout << " Test program for vpServo " << std::endl;
228 std::cout << " Eye-in-hand task control, velocity computed in the camera space" << std::endl;
229 std::cout << " Use of the Viper850 robot " << std::endl;
230 std::cout << " task : servo 4 points on a square with dimention " << L << " meters" << std::endl;
231 std::cout << "-------------------------------------------------------" << std::endl;
232 std::cout << std::endl;
233
234 vpDot2 dot[4];
235 vpImagePoint cog;
236
237 std::cout << "Click on the 4 dots clockwise starting from upper/left dot..." << std::endl;
238
239 for (i = 0; i < 4; i++) {
240 dot[i].initTracking(I);
241 cog = dot[i].getCog();
244 }
245
246 // Get Kinect Camera Parameters
248 // kinect.getRGBCamParameters(cam);
249
250 robot.getCameraParameters(cam, I);
251
252 cam.printParameters();
253
254 // Sets the current position of the visual feature
255 vpFeaturePoint p[4];
256 for (i = 0; i < 4; i++)
257 vpFeatureBuilder::create(p[i], cam, dot[i]); // retrieve x,y of the vpFeaturePoint structure
258
259 // Set the position of the square target in a frame which origin is
260 // centered in the middle of the square
261 vpPoint point[4];
262 point[0].setWorldCoordinates(-L, -L, 0);
263 point[1].setWorldCoordinates(L, -L, 0);
264 point[2].setWorldCoordinates(L, L, 0);
265 point[3].setWorldCoordinates(-L, L, 0);
266
267 // Initialise a desired pose to compute s*, the desired 2D point features
269 vpTranslationVector cto(0, 0, 0.5); // tz = 0.5 meter
271 vpRotationMatrix cRo(cro); // Build the rotation matrix
272 cMo.buildFrom(cto, cRo); // Build the homogeneous matrix
273
274 // Sets the desired position of the 2D visual feature
275 vpFeaturePoint pd[4];
276 // Compute the desired position of the features from the desired pose
277 for (int i = 0; i < 4; i++) {
278 vpColVector cP, p;
279 point[i].changeFrame(cMo, cP);
280 point[i].projection(cP, p);
281
282 pd[i].set_x(p[0]);
283 pd[i].set_y(p[1]);
284 pd[i].set_Z(cP[2]);
285 }
286
287 // We want to see a point on a point
288 for (i = 0; i < 4; i++)
289 task.addFeature(p[i], pd[i]);
290
291 // Set the proportional gain
292 task.setLambda(0.5);
293
294 // Display task information
295 task.print();
296
297 // Define the task
298 // - we want an eye-in-hand control law
299 // - articular velocity are computed
302 task.print();
303
304 // Initialise the velocity control of the robot
306
307 std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
308 for (;;) {
309 // Acquire a new image from the kinect
310 kinect.getRGB(Irgb);
312
313 // Display this image
315
316 try {
317 // For each point...
318 for (i = 0; i < 4; i++) {
319 // Achieve the tracking of the dot in the image
320 dot[i].track(I);
321 // Display a green cross at the center of gravity position in the
322 // image
323 cog = dot[i].getCog();
325 }
326 } catch (...) {
327 flog.close(); // Close the log file
328 vpTRACE("Error detected while tracking visual features");
329 robot.stopMotion();
330 kinect.stop();
331 return (1);
332 }
333
334 // During the servo, we compute the pose using LOWE method. For the
335 // initial pose used in the non linear minimisation we use the pose
336 // computed at the previous iteration.
337 compute_pose(point, dot, 4, cam, cMo, cto, cro, false);
338
339 for (i = 0; i < 4; i++) {
340 // Update the point feature from the dot location
341 vpFeatureBuilder::create(p[i], cam, dot[i]);
342 // Set the feature Z coordinate from the pose
343 vpColVector cP;
344 point[i].changeFrame(cMo, cP);
345
346 p[i].set_Z(cP[2]);
347 }
348
349 vpColVector v;
350 // Compute the visual servoing skew vector
351 v = task.computeControlLaw();
352
353 // Display the current and desired feature points in the image display
354 vpServoDisplay::display(task, cam, I);
355
356 // Apply the computed joint velocities to the robot
358
359 // Save velocities applied to the robot in the log file
360 // v[0], v[1], v[2] correspond to joint translation velocities in m/s
361 // v[3], v[4], v[5] correspond to joint rotation velocities in rad/s
362 flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
363
364 // Get the measured joint velocities of the robot
365 vpColVector qvel;
367 // Save measured joint velocities of the robot in the log file:
368 // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
369 // velocities in m/s
370 // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
371 // velocities in rad/s
372 flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
373
374 // Get the measured joint positions of the robot
375 vpColVector q;
376 robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
377 // Save measured joint positions of the robot in the log file
378 // - q[0], q[1], q[2] correspond to measured joint translation
379 // positions in m
380 // - q[3], q[4], q[5] correspond to measured joint rotation
381 // positions in rad
382 flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
383
384 // Save feature error (s-s*) for the 4 feature points. For each feature
385 // point, we have 2 errors (along x and y axis). This error is
386 // expressed in meters in the camera frame
387 flog << (task.getError()).t() << std::endl;
388
389 // Flush the display
391
392 // std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() <<
393 // std::endl;
394 }
395
396 kinect.stop();
397 std::cout << "Display task information: " << std::endl;
398 task.print();
399 flog.close(); // Close the log file
400 return EXIT_SUCCESS;
401 }
402 catch (const vpException &e) {
403 flog.close(); // Close the log file
404 std::cout << "Catch an exception: " << e.getMessage() << std::endl;
405 return EXIT_FAILURE;
406 }
407}
408
409#else
410int main()
411{
412 std::cout << "You do not have an Viper 850 robot connected to your computer..." << std::endl;
413 return EXIT_SUCCESS;
414}
415#endif
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
static const vpColor blue
Definition: vpColor.h:223
static const vpColor green
Definition: vpColor.h:220
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:135
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:135
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
This tracker is meant to track a blob (connex pixels with same gray level) on a vpImage.
Definition: vpDot2.h:127
void track(const vpImage< unsigned char > &I, bool canMakeTheWindowGrow=true)
Definition: vpDot2.cpp:441
vpImagePoint getCog() const
Definition: vpDot2.h:180
void initTracking(const vpImage< unsigned char > &I, unsigned int size=0)
Definition: vpDot2.cpp:253
error that can be emited by ViSP classes.
Definition: vpException.h:72
const char * getMessage() const
Definition: vpException.cpp:90
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void set_y(double y)
void set_x(double x)
void set_Z(double Z)
Implementation of an homogeneous matrix and operations on such kind of matrices.
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
void extract(vpRotationMatrix &R) const
static void convert(const vpImage< unsigned char > &src, vpImage< vpRGBa > &dest)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:88
void init(unsigned int h, unsigned int w, Type value)
Definition: vpImage.h:631
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:420
static std::string getUserName()
Definition: vpIoTools.cpp:316
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:570
Driver for the Kinect-1 device.
Definition: vpKinect.h:110
void stop()
Definition: vpKinect.cpp:116
void start(vpKinect::vpDMResolution res=DMAP_LOW_RES)
Definition: vpKinect.cpp:73
@ DMAP_LOW_RES
Definition: vpKinect.h:125
bool getRGB(vpImage< vpRGBa > &IRGB)
Definition: vpKinect.cpp:231
static double rad(double deg)
Definition: vpMath.h:110
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:82
void set_x(double x)
Set the point x coordinate in the image plane.
Definition: vpPoint.cpp:511
void projection(const vpColVector &_cP, vpColVector &_p) const
Definition: vpPoint.cpp:222
void changeFrame(const vpHomogeneousMatrix &cMo, vpColVector &cP) const
Definition: vpPoint.cpp:239
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:113
void set_y(double y)
Set the point y coordinate in the image plane.
Definition: vpPoint.cpp:513
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:81
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:149
@ DEMENTHON
Definition: vpPose.h:86
@ LAGRANGE
Definition: vpPose.h:85
@ LOWE
Definition: vpPose.h:87
double computeResidual(const vpHomogeneousMatrix &cMo) const
Compute and return the sum of squared residuals expressed in meter^2 for the pose matrix cMo.
Definition: vpPose.cpp:336
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=NULL)
Definition: vpPose.cpp:374
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
@ ARTICULAR_FRAME
Definition: vpRobot.h:78
@ CAMERA_FRAME
Definition: vpRobot.h:82
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:66
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:201
Implementation of a rotation matrix and operations on such kind of matrices.
vpRotationMatrix buildFrom(const vpHomogeneousMatrix &M)
Implementation of a rotation vector as Euler angle minimal representation.
Definition: vpRxyzVector.h:184
vpRxyzVector buildFrom(const vpRotationMatrix &R)
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
void setLambda(double c)
Definition: vpServo.h:404
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
vpColVector getError() const
Definition: vpServo.h:278
@ PSEUDO_INVERSE
Definition: vpServo.h:202
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
@ CURRENT
Definition: vpServo.h:182
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
Class that consider the case of a translation vector.
@ TOOL_GENERIC_CAMERA
Definition: vpViper850.h:132
#define vpTRACE
Definition: vpDebug.h:416