Visual Servoing Platform version 3.5.0
servoViper850FourPoints2DArtVelocityLs_cur.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * tests the control law
33 * eye-in-hand control
34 * velocity computed in the articular frame
35 *
36 * Authors:
37 * Fabien Spindler
38 *
39 *****************************************************************************/
51#include <visp3/core/vpConfig.h>
52#include <visp3/core/vpDebug.h> // Debug trace
53
54#include <fstream>
55#include <iostream>
56#include <sstream>
57#include <stdio.h>
58#include <stdlib.h>
59#if (defined(VISP_HAVE_VIPER850) && defined(VISP_HAVE_DC1394))
60
61#include <visp3/blob/vpDot2.h>
62#include <visp3/core/vpDisplay.h>
63#include <visp3/core/vpHomogeneousMatrix.h>
64#include <visp3/core/vpImage.h>
65#include <visp3/core/vpIoTools.h>
66#include <visp3/core/vpMath.h>
67#include <visp3/core/vpPoint.h>
68#include <visp3/gui/vpDisplayGTK.h>
69#include <visp3/gui/vpDisplayOpenCV.h>
70#include <visp3/gui/vpDisplayX.h>
71#include <visp3/robot/vpRobotViper850.h>
72#include <visp3/sensor/vp1394TwoGrabber.h>
73#include <visp3/vision/vpPose.h>
74#include <visp3/visual_features/vpFeatureBuilder.h>
75#include <visp3/visual_features/vpFeaturePoint.h>
76#include <visp3/vs/vpServo.h>
77#include <visp3/vs/vpServoDisplay.h>
78
79#define L 0.05 // to deal with a 10cm by 10cm square
80
106void compute_pose(vpPoint point[], vpDot2 dot[], int ndot, vpCameraParameters cam, vpHomogeneousMatrix &cMo,
107 vpTranslationVector &cto, vpRxyzVector &cro, bool init)
108{
109 vpHomogeneousMatrix cMo_dementhon; // computed pose with dementhon
110 vpHomogeneousMatrix cMo_lagrange; // computed pose with dementhon
112 vpPose pose;
113 vpImagePoint cog;
114 for (int i = 0; i < ndot; i++) {
115
116 double x = 0, y = 0;
117 cog = dot[i].getCog();
119 y); // pixel to meter conversion
120 point[i].set_x(x); // projection perspective p
121 point[i].set_y(y);
122 pose.addPoint(point[i]);
123 }
124
125 if (init == true) {
126 pose.computePose(vpPose::DEMENTHON, cMo_dementhon);
127 // Compute and return the residual expressed in meter for the pose matrix
128 // 'cMo'
129 double residual_dementhon = pose.computeResidual(cMo_dementhon);
130 pose.computePose(vpPose::LAGRANGE, cMo_lagrange);
131 double residual_lagrange = pose.computeResidual(cMo_lagrange);
132
133 // Select the best pose to initialize the lowe pose computation
134 if (residual_lagrange < residual_dementhon)
135 cMo = cMo_lagrange;
136 else
137 cMo = cMo_dementhon;
138
139 } else { // init = false; use of the previous pose to initialise LOWE
140 cRo.buildFrom(cro);
141 cMo.buildFrom(cto, cRo);
142 }
143 pose.computePose(vpPose::LOWE, cMo);
144 cMo.extract(cto);
145 cMo.extract(cRo);
146 cro.buildFrom(cRo);
147}
148
149int main()
150{
151 // Log file creation in /tmp/$USERNAME/log.dat
152 // This file contains by line:
153 // - the 6 computed joint velocities (m/s, rad/s) to achieve the task
154 // - the 6 mesured joint velocities (m/s, rad/s)
155 // - the 6 mesured joint positions (m, rad)
156 // - the 8 values of s - s*
157 std::string username;
158 // Get the user login name
159 vpIoTools::getUserName(username);
160
161 // Create a log filename to save velocities...
162 std::string logdirname;
163 logdirname = "/tmp/" + username;
164
165 // Test if the output path exist. If no try to create it
166 if (vpIoTools::checkDirectory(logdirname) == false) {
167 try {
168 // Create the dirname
169 vpIoTools::makeDirectory(logdirname);
170 } catch (...) {
171 std::cerr << std::endl << "ERROR:" << std::endl;
172 std::cerr << " Cannot create " << logdirname << std::endl;
173 return (-1);
174 }
175 }
176 std::string logfilename;
177 logfilename = logdirname + "/log.dat";
178
179 // Open the log file name
180 std::ofstream flog(logfilename.c_str());
181
182 try {
183 vpRobotViper850 robot;
184 // Load the end-effector to camera frame transformation obtained
185 // using a camera intrinsic model with distortion
188
189 vpServo task;
190
192 int i;
193
194 bool reset = false;
195 vp1394TwoGrabber g(reset);
197 g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_60);
198 g.open(I);
199
200 g.acquire(I);
201
202#ifdef VISP_HAVE_X11
203 vpDisplayX display(I, 100, 100, "Current image");
204#elif defined(VISP_HAVE_OPENCV)
205 vpDisplayOpenCV display(I, 100, 100, "Current image");
206#elif defined(VISP_HAVE_GTK)
207 vpDisplayGTK display(I, 100, 100, "Current image");
208#endif
209
212
213 std::cout << std::endl;
214 std::cout << "-------------------------------------------------------" << std::endl;
215 std::cout << " Test program for vpServo " << std::endl;
216 std::cout << " Eye-in-hand task control, velocity computed in the joint space" << std::endl;
217 std::cout << " Use of the Afma6 robot " << std::endl;
218 std::cout << " task : servo 4 points on a square with dimention " << L << " meters" << std::endl;
219 std::cout << "-------------------------------------------------------" << std::endl;
220 std::cout << std::endl;
221
222 vpDot2 dot[4];
223 vpImagePoint cog;
224
225 std::cout << "Click on the 4 dots clockwise starting from upper/left dot..." << std::endl;
226
227 for (i = 0; i < 4; i++) {
228 dot[i].setGraphics(true);
229 dot[i].initTracking(I);
230 cog = dot[i].getCog();
233 }
234
236
237 // Update camera parameters
238 robot.getCameraParameters(cam, I);
239
240 cam.printParameters();
241
242 // Sets the current position of the visual feature
243 vpFeaturePoint p[4];
244 for (i = 0; i < 4; i++)
245 vpFeatureBuilder::create(p[i], cam, dot[i]); // retrieve x,y of the vpFeaturePoint structure
246
247 // Set the position of the square target in a frame which origin is
248 // centered in the middle of the square
249 vpPoint point[4];
250 point[0].setWorldCoordinates(-L, -L, 0);
251 point[1].setWorldCoordinates(L, -L, 0);
252 point[2].setWorldCoordinates(L, L, 0);
253 point[3].setWorldCoordinates(-L, L, 0);
254
255 // Initialise a desired pose to compute s*, the desired 2D point features
257 vpTranslationVector cto(0, 0, 0.5); // tz = 0.5 meter
259 vpRotationMatrix cRo(cro); // Build the rotation matrix
260 cMo.buildFrom(cto, cRo); // Build the homogeneous matrix
261
262 // Sets the desired position of the 2D visual feature
263 vpFeaturePoint pd[4];
264 // Compute the desired position of the features from the desired pose
265 for (int i = 0; i < 4; i++) {
266 vpColVector cP, p;
267 point[i].changeFrame(cMo, cP);
268 point[i].projection(cP, p);
269
270 pd[i].set_x(p[0]);
271 pd[i].set_y(p[1]);
272 pd[i].set_Z(cP[2]);
273 }
274
275 // We want to see a point on a point
276 for (i = 0; i < 4; i++)
277 task.addFeature(p[i], pd[i]);
278
279 // Set the proportional gain
280 task.setLambda(0.3);
281
282 // Display task information
283 task.print();
284
285 // Define the task
286 // - we want an eye-in-hand control law
287 // - articular velocity are computed
290 task.print();
291
293 robot.get_cVe(cVe);
294 task.set_cVe(cVe);
295 task.print();
296
297 // Set the Jacobian (expressed in the end-effector frame)
298 vpMatrix eJe;
299 robot.get_eJe(eJe);
300 task.set_eJe(eJe);
301 task.print();
302
303 // Initialise the velocity control of the robot
305
306 std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
307 for (;;) {
308 // Acquire a new image from the camera
309 g.acquire(I);
310
311 // Display this image
313
314 try {
315 // For each point...
316 for (i = 0; i < 4; i++) {
317 // Achieve the tracking of the dot in the image
318 dot[i].track(I);
319 // Display a green cross at the center of gravity position in the
320 // image
321 cog = dot[i].getCog();
323 }
324 } catch (...) {
325 flog.close(); // Close the log file
326 vpTRACE("Error detected while tracking visual features");
327 robot.stopMotion();
328 return (1);
329 }
330
331 // During the servo, we compute the pose using LOWE method. For the
332 // initial pose used in the non linear minimisation we use the pose
333 // computed at the previous iteration.
334 compute_pose(point, dot, 4, cam, cMo, cto, cro, false);
335
336 for (i = 0; i < 4; i++) {
337 // Update the point feature from the dot location
338 vpFeatureBuilder::create(p[i], cam, dot[i]);
339 // Set the feature Z coordinate from the pose
340 vpColVector cP;
341 point[i].changeFrame(cMo, cP);
342
343 p[i].set_Z(cP[2]);
344 }
345
346 // Get the jacobian of the robot
347 robot.get_eJe(eJe);
348 // Update this jacobian in the task structure. It will be used to
349 // compute the velocity skew (as an articular velocity) qdot = -lambda *
350 // L^+ * cVe * eJe * (s-s*)
351 task.set_eJe(eJe);
352
353 vpColVector v;
354 // Compute the visual servoing skew vector
355 v = task.computeControlLaw();
356
357 // Display the current and desired feature points in the image display
358 vpServoDisplay::display(task, cam, I);
359
360 // Apply the computed joint velocities to the robot
362
363 // Save velocities applied to the robot in the log file
364 // v[0], v[1], v[2] correspond to joint translation velocities in m/s
365 // v[3], v[4], v[5] correspond to joint rotation velocities in rad/s
366 flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
367
368 // Get the measured joint velocities of the robot
369 vpColVector qvel;
371 // Save measured joint velocities of the robot in the log file:
372 // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
373 // velocities in m/s
374 // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
375 // velocities in rad/s
376 flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
377
378 // Get the measured joint positions of the robot
379 vpColVector q;
380 robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
381 // Save measured joint positions of the robot in the log file
382 // - q[0], q[1], q[2] correspond to measured joint translation
383 // positions in m
384 // - q[3], q[4], q[5] correspond to measured joint rotation
385 // positions in rad
386 flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
387
388 // Save feature error (s-s*) for the 4 feature points. For each feature
389 // point, we have 2 errors (along x and y axis). This error is
390 // expressed in meters in the camera frame
391 flog << (task.getError()).t() << std::endl;
392
393 // Flush the display
395
396 // std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() <<
397 // std::endl;
398 }
399
400 std::cout << "Display task information: " << std::endl;
401 task.print();
402 flog.close(); // Close the log file
403 return EXIT_SUCCESS;
404 }
405 catch (const vpException &e) {
406 flog.close(); // Close the log file
407 std::cout << "Catch an exception: " << e.getMessage() << std::endl;
408 return EXIT_FAILURE;
409 }
410}
411
412#else
413int main()
414{
415 std::cout << "You do not have an Viper 850 robot connected to your computer..." << std::endl;
416 return EXIT_SUCCESS;
417}
418#endif
Class for firewire ieee1394 video devices using libdc1394-2.x api.
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
static const vpColor blue
Definition: vpColor.h:223
static const vpColor green
Definition: vpColor.h:220
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:135
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:135
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
This tracker is meant to track a blob (connex pixels with same gray level) on a vpImage.
Definition: vpDot2.h:127
void track(const vpImage< unsigned char > &I, bool canMakeTheWindowGrow=true)
Definition: vpDot2.cpp:441
void setGraphics(bool activate)
Definition: vpDot2.h:314
vpImagePoint getCog() const
Definition: vpDot2.h:180
void initTracking(const vpImage< unsigned char > &I, unsigned int size=0)
Definition: vpDot2.cpp:253
error that can be emited by ViSP classes.
Definition: vpException.h:72
const char * getMessage() const
Definition: vpException.cpp:90
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void set_y(double y)
void set_x(double x)
void set_Z(double Z)
Implementation of an homogeneous matrix and operations on such kind of matrices.
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
void extract(vpRotationMatrix &R) const
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:88
void init(unsigned int h, unsigned int w, Type value)
Definition: vpImage.h:631
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:420
static std::string getUserName()
Definition: vpIoTools.cpp:316
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:570
static double rad(double deg)
Definition: vpMath.h:110
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:154
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:82
void set_x(double x)
Set the point x coordinate in the image plane.
Definition: vpPoint.cpp:511
void projection(const vpColVector &_cP, vpColVector &_p) const
Definition: vpPoint.cpp:222
void changeFrame(const vpHomogeneousMatrix &cMo, vpColVector &cP) const
Definition: vpPoint.cpp:239
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:113
void set_y(double y)
Set the point y coordinate in the image plane.
Definition: vpPoint.cpp:513
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:81
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:149
@ DEMENTHON
Definition: vpPose.h:86
@ LAGRANGE
Definition: vpPose.h:85
@ LOWE
Definition: vpPose.h:87
double computeResidual(const vpHomogeneousMatrix &cMo) const
Compute and return the sum of squared residuals expressed in meter^2 for the pose matrix cMo.
Definition: vpPose.cpp:336
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=NULL)
Definition: vpPose.cpp:374
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
void get_eJe(vpMatrix &eJe)
@ ARTICULAR_FRAME
Definition: vpRobot.h:78
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:66
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:201
Implementation of a rotation matrix and operations on such kind of matrices.
vpRotationMatrix buildFrom(const vpHomogeneousMatrix &M)
Implementation of a rotation vector as Euler angle minimal representation.
Definition: vpRxyzVector.h:184
vpRxyzVector buildFrom(const vpRotationMatrix &R)
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:159
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:448
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
void setLambda(double c)
Definition: vpServo.h:404
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:506
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
vpColVector getError() const
Definition: vpServo.h:278
@ PSEUDO_INVERSE
Definition: vpServo.h:202
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
@ CURRENT
Definition: vpServo.h:182
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
Class that consider the case of a translation vector.
vpVelocityTwistMatrix get_cVe() const
Definition: vpUnicycle.h:82
@ TOOL_PTGREY_FLEA2_CAMERA
Definition: vpViper850.h:130
#define vpTRACE
Definition: vpDebug.h:416