Geometric Tests¶
Defines a number of functions to test interactions between various forms data types.
- pyrr.geometric_tests.point_closest_point_on_line(point, line)[source]¶
Calculates the point on the line that is closest to the specified point.
- Parameters:
point (numpy.array) – The point to check with.
line (numpy.array) – The line to check against.
- Return type:
numpy.array
- Returns:
The closest point on the line to the point.
- pyrr.geometric_tests.point_closest_point_on_line_segment(point, segment)[source]¶
Calculates the point on the line segment that is closest to the specified point.
This is similar to point_closest_point_on_line, except this is against the line segment of finite length. Whereas point_closest_point_on_line checks against a line of infinite length.
- Parameters:
point (numpy.array) – The point to check with.
line_segment (numpy.array) – The finite line segment to check against.
- Return type:
numpy.array
- Returns:
The closest point on the line segment to the point.
- pyrr.geometric_tests.point_closest_point_on_plane(point, pl)[source]¶
Calculates the point on a plane that is closest to a point.
- Parameters:
point (numpy.array) – The point to check with.
plane (numpy.array) – The infinite plane to check against.
- Return type:
numpy.array
- Returns:
The closest point on the plane to the point.
- pyrr.geometric_tests.point_closest_point_on_ray(point, ray)[source]¶
Calculates the point on a ray that is closest to a point.
- Parameters:
point (numpy.array) – The point to check with.
ray (numpy.array) – The ray to check against.
- Return type:
numpy.array
- Returns:
The closest point on the ray to the point.
- pyrr.geometric_tests.point_height_above_plane(point, pl)[source]¶
Calculates how high a point is above a plane.
- Parameters:
point (numpy.array) – The point to check.
plane (numpy.array) – The plane to check.
- Return type:
float
- Returns:
The height above the plane as a float. The value will be negative if the point is behind the plane.
- pyrr.geometric_tests.point_intersect_line(point, line)[source]¶
Calculates the intersection point of a point and aline.
Performed by checking if the cross-product of the point relative to the line is 0.
- pyrr.geometric_tests.point_intersect_line_segment(point, line)[source]¶
Calculates the intersection point of a point and a line segment.
Performed by checking if the cross-product of the point relative to the line is 0 and if the dot product of the point relative to the line start AND the end point relative to the line start is less than the segment’s squared length.
- pyrr.geometric_tests.point_intersect_rectangle(point, rect)[source]¶
Calculates the intersection point of a point and a 2D rectangle.
For 3D points, the Z axis will be ignored.
- Returns:
Returns True if the point is touching
or within the rectangle.
- pyrr.geometric_tests.ray_coincident_ray(ray1, ray2)[source]¶
Check if rays are coincident.
Rays must not only be parallel to each other, but reside along the same vector.
- Parameters:
ray2 (numpy.array ray1,) – The rays to check.
- Return type:
boolean
- Returns:
Returns True if the two rays are co-incident.
- pyrr.geometric_tests.ray_intersect_aabb(ray, aabb)[source]¶
Calculates the intersection point of a ray and an AABB
- Parameters:
ray1 (numpy.array) – The ray to check.
aabb (numpy.array) – The Axis-Aligned Bounding Box to check against.
- Return type:
numpy.array
- Returns:
Returns a vector if an intersection occurs. Returns None if no intersection occurs.
- pyrr.geometric_tests.ray_intersect_plane(ray, pl, front_only=False)[source]¶
Calculates the intersection point of a ray and a plane.
- Parameters:
ray (numpy.array) – The ray to test for intersection.
pl (numpy.array) – The plane to test for intersection.
front_only (boolean) – Specifies if the ray should
only hit the front of the plane. Collisions from the rear of the plane will be ignored.
:return The intersection point, or None if the ray is parallel to the plane. Returns None if the ray intersects the back of the plane and front_only is True.
- pyrr.geometric_tests.ray_intersect_sphere(ray, sphere)[source]¶
Returns the intersection points of a ray and a sphere. See: https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection The ray is defined via the following equation O+tD. Where O is the origin point and D is a direction vector. A sphere is defined as |P−C|^2=R2 where P is the origin and C is the center of the sphere. R is the radius of the sphere.
- Args:
ray: Ray geometry sphere: Sphere geometry
- Returns:
list: Intersection points as 3D vector list
- Parameters:
ray (numpy.array) – Ray parameter.
sphere (numpy.array) – Sphere parameter.
- Return type:
float
- Returns:
Intersection points as a list of points.
- pyrr.geometric_tests.ray_parallel_ray(ray1, ray2)[source]¶
Checks if two rays are parallel.
- Parameters:
ray2 (numpy.array ray1,) – The rays to check.
- Return type:
boolean
- Returns:
Returns True if the two rays are parallel.
- pyrr.geometric_tests.sphere_does_intersect_sphere(s1, s2)[source]¶
Checks if two spheres overlap.
Note: This will return True if the two spheres are touching perfectly but sphere_penetration_sphere will return 0.0 as the touch but don’t penetrate.
This is faster than circle_penetrate_amount_circle as it avoids a square root calculation.
- Parameters:
s1 (numpy.array) – The first circle.
s2 (numpy.array) – The second circle.
- Return type:
boolean
- Returns:
Returns True if the circles overlap. Otherwise, returns False.
- pyrr.geometric_tests.sphere_penetration_sphere(s1, s2)[source]¶
Calculates the distance two spheres have penetrated into one another.
- Parameters:
s1 (numpy.array) – The first circle.
s2 (numpy.array) – The second circle.
- Return type:
float
- Returns:
The total overlap of the two spheres. This is essentially: r1 + r2 - distance Where r1 and r2 are the radii of circle 1 and 2 and distance is the length of the vector p2 - p1. Will return 0.0 if the circles do not overlap.