LLVM OpenMP* Runtime Library
kmp.h
1
2/*
3 * kmp.h -- KPTS runtime header file.
4 */
5
6//===----------------------------------------------------------------------===//
7//
8// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9// See https://llvm.org/LICENSE.txt for license information.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef KMP_H
15#define KMP_H
16
17#include "kmp_config.h"
18
19/* #define BUILD_PARALLEL_ORDERED 1 */
20
21/* This fix replaces gettimeofday with clock_gettime for better scalability on
22 the Altix. Requires user code to be linked with -lrt. */
23//#define FIX_SGI_CLOCK
24
25/* Defines for OpenMP 3.0 tasking and auto scheduling */
26
27#ifndef KMP_STATIC_STEAL_ENABLED
28#define KMP_STATIC_STEAL_ENABLED 1
29#endif
30
31#define TASK_CURRENT_NOT_QUEUED 0
32#define TASK_CURRENT_QUEUED 1
33
34#ifdef BUILD_TIED_TASK_STACK
35#define TASK_STACK_EMPTY 0 // entries when the stack is empty
36#define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37// Number of entries in each task stack array
38#define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39// Mask for determining index into stack block
40#define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41#endif // BUILD_TIED_TASK_STACK
42
43#define TASK_NOT_PUSHED 1
44#define TASK_SUCCESSFULLY_PUSHED 0
45#define TASK_TIED 1
46#define TASK_UNTIED 0
47#define TASK_EXPLICIT 1
48#define TASK_IMPLICIT 0
49#define TASK_PROXY 1
50#define TASK_FULL 0
51#define TASK_DETACHABLE 1
52#define TASK_UNDETACHABLE 0
53
54#define KMP_CANCEL_THREADS
55#define KMP_THREAD_ATTR
56
57// Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58// built on Android
59#if defined(__ANDROID__)
60#undef KMP_CANCEL_THREADS
61#endif
62
63#include <signal.h>
64#include <stdarg.h>
65#include <stddef.h>
66#include <stdio.h>
67#include <stdlib.h>
68#include <string.h>
69#include <limits>
70#include <type_traits>
71/* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72 Microsoft library. Some macros provided below to replace these functions */
73#ifndef __ABSOFT_WIN
74#include <sys/types.h>
75#endif
76#include <limits.h>
77#include <time.h>
78
79#include <errno.h>
80
81#include "kmp_os.h"
82
83#include "kmp_safe_c_api.h"
84
85#if KMP_STATS_ENABLED
86class kmp_stats_list;
87#endif
88
89#if KMP_USE_HIER_SCHED
90// Only include hierarchical scheduling if affinity is supported
91#undef KMP_USE_HIER_SCHED
92#define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93#endif
94
95#if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96#include "hwloc.h"
97#ifndef HWLOC_OBJ_NUMANODE
98#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99#endif
100#ifndef HWLOC_OBJ_PACKAGE
101#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102#endif
103#endif
104
105#if KMP_ARCH_X86 || KMP_ARCH_X86_64
106#include <xmmintrin.h>
107#endif
108
109// The below has to be defined before including "kmp_barrier.h".
110#define KMP_INTERNAL_MALLOC(sz) malloc(sz)
111#define KMP_INTERNAL_FREE(p) free(p)
112#define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
113#define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
114
115#include "kmp_debug.h"
116#include "kmp_lock.h"
117#include "kmp_version.h"
118#include "kmp_barrier.h"
119#if USE_DEBUGGER
120#include "kmp_debugger.h"
121#endif
122#include "kmp_i18n.h"
123
124#define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
125
126#include "kmp_wrapper_malloc.h"
127#if KMP_OS_UNIX
128#include <unistd.h>
129#if !defined NSIG && defined _NSIG
130#define NSIG _NSIG
131#endif
132#endif
133
134#if KMP_OS_LINUX
135#pragma weak clock_gettime
136#endif
137
138#if OMPT_SUPPORT
139#include "ompt-internal.h"
140#endif
141
142#if OMPD_SUPPORT
143#include "ompd-specific.h"
144#endif
145
146#ifndef UNLIKELY
147#define UNLIKELY(x) (x)
148#endif
149
150// Affinity format function
151#include "kmp_str.h"
152
153// 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
154// 3 - fast allocation using sync, non-sync free lists of any size, non-self
155// free lists of limited size.
156#ifndef USE_FAST_MEMORY
157#define USE_FAST_MEMORY 3
158#endif
159
160#ifndef KMP_NESTED_HOT_TEAMS
161#define KMP_NESTED_HOT_TEAMS 0
162#define USE_NESTED_HOT_ARG(x)
163#else
164#if KMP_NESTED_HOT_TEAMS
165#define USE_NESTED_HOT_ARG(x) , x
166#else
167#define USE_NESTED_HOT_ARG(x)
168#endif
169#endif
170
171// Assume using BGET compare_exchange instruction instead of lock by default.
172#ifndef USE_CMP_XCHG_FOR_BGET
173#define USE_CMP_XCHG_FOR_BGET 1
174#endif
175
176// Test to see if queuing lock is better than bootstrap lock for bget
177// #ifndef USE_QUEUING_LOCK_FOR_BGET
178// #define USE_QUEUING_LOCK_FOR_BGET
179// #endif
180
181#define KMP_NSEC_PER_SEC 1000000000L
182#define KMP_USEC_PER_SEC 1000000L
183
192enum {
197 /* 0x04 is no longer used */
206 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
207 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
208 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
209
210 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
211 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
212
224 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
225 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
226 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
227 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
228 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
229};
230
234typedef struct ident {
235 kmp_int32 reserved_1;
236 kmp_int32 flags;
238 kmp_int32 reserved_2;
239#if USE_ITT_BUILD
240/* but currently used for storing region-specific ITT */
241/* contextual information. */
242#endif /* USE_ITT_BUILD */
243 kmp_int32 reserved_3;
244 char const *psource;
248 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
249 kmp_int32 get_openmp_version() {
250 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
251 }
257// Some forward declarations.
258typedef union kmp_team kmp_team_t;
259typedef struct kmp_taskdata kmp_taskdata_t;
260typedef union kmp_task_team kmp_task_team_t;
261typedef union kmp_team kmp_team_p;
262typedef union kmp_info kmp_info_p;
263typedef union kmp_root kmp_root_p;
264
265template <bool C = false, bool S = true> class kmp_flag_32;
266template <bool C = false, bool S = true> class kmp_flag_64;
267template <bool C = false, bool S = true> class kmp_atomic_flag_64;
268class kmp_flag_oncore;
269
270#ifdef __cplusplus
271extern "C" {
272#endif
273
274/* ------------------------------------------------------------------------ */
275
276/* Pack two 32-bit signed integers into a 64-bit signed integer */
277/* ToDo: Fix word ordering for big-endian machines. */
278#define KMP_PACK_64(HIGH_32, LOW_32) \
279 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
280
281// Generic string manipulation macros. Assume that _x is of type char *
282#define SKIP_WS(_x) \
283 { \
284 while (*(_x) == ' ' || *(_x) == '\t') \
285 (_x)++; \
286 }
287#define SKIP_DIGITS(_x) \
288 { \
289 while (*(_x) >= '0' && *(_x) <= '9') \
290 (_x)++; \
291 }
292#define SKIP_TOKEN(_x) \
293 { \
294 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
295 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
296 (_x)++; \
297 }
298#define SKIP_TO(_x, _c) \
299 { \
300 while (*(_x) != '\0' && *(_x) != (_c)) \
301 (_x)++; \
302 }
303
304/* ------------------------------------------------------------------------ */
305
306#define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
307#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
308
309/* ------------------------------------------------------------------------ */
310/* Enumeration types */
311
312enum kmp_state_timer {
313 ts_stop,
314 ts_start,
315 ts_pause,
316
317 ts_last_state
318};
319
320enum dynamic_mode {
321 dynamic_default,
322#ifdef USE_LOAD_BALANCE
323 dynamic_load_balance,
324#endif /* USE_LOAD_BALANCE */
325 dynamic_random,
326 dynamic_thread_limit,
327 dynamic_max
328};
329
330/* external schedule constants, duplicate enum omp_sched in omp.h in order to
331 * not include it here */
332#ifndef KMP_SCHED_TYPE_DEFINED
333#define KMP_SCHED_TYPE_DEFINED
334typedef enum kmp_sched {
335 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
336 // Note: need to adjust __kmp_sch_map global array in case enum is changed
337 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
338 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
339 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
340 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
341 kmp_sched_upper_std = 5, // upper bound for standard schedules
342 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
343 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
344#if KMP_STATIC_STEAL_ENABLED
345 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
346#endif
347 kmp_sched_upper,
348 kmp_sched_default = kmp_sched_static, // default scheduling
349 kmp_sched_monotonic = 0x80000000
350} kmp_sched_t;
351#endif
352
357enum sched_type : kmp_int32 {
359 kmp_sch_static_chunked = 33,
361 kmp_sch_dynamic_chunked = 35,
363 kmp_sch_runtime = 37,
365 kmp_sch_trapezoidal = 39,
366
367 /* accessible only through KMP_SCHEDULE environment variable */
368 kmp_sch_static_greedy = 40,
369 kmp_sch_static_balanced = 41,
370 /* accessible only through KMP_SCHEDULE environment variable */
371 kmp_sch_guided_iterative_chunked = 42,
372 kmp_sch_guided_analytical_chunked = 43,
373 /* accessible only through KMP_SCHEDULE environment variable */
374 kmp_sch_static_steal = 44,
375
376 /* static with chunk adjustment (e.g., simd) */
377 kmp_sch_static_balanced_chunked = 45,
381 /* accessible only through KMP_SCHEDULE environment variable */
385 kmp_ord_static_chunked = 65,
387 kmp_ord_dynamic_chunked = 67,
388 kmp_ord_guided_chunked = 68,
389 kmp_ord_runtime = 69,
391 kmp_ord_trapezoidal = 71,
394 /* Schedules for Distribute construct */
398 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
399 single iteration/chunk, even if the loop is serialized. For the schedule
400 types listed above, the entire iteration vector is returned if the loop is
401 serialized. This doesn't work for gcc/gcomp sections. */
404 kmp_nm_static_chunked =
405 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
407 kmp_nm_dynamic_chunked = 163,
409 kmp_nm_runtime = 165,
411 kmp_nm_trapezoidal = 167,
412
413 /* accessible only through KMP_SCHEDULE environment variable */
414 kmp_nm_static_greedy = 168,
415 kmp_nm_static_balanced = 169,
416 /* accessible only through KMP_SCHEDULE environment variable */
417 kmp_nm_guided_iterative_chunked = 170,
418 kmp_nm_guided_analytical_chunked = 171,
419 kmp_nm_static_steal =
420 172, /* accessible only through OMP_SCHEDULE environment variable */
421
422 kmp_nm_ord_static_chunked = 193,
424 kmp_nm_ord_dynamic_chunked = 195,
425 kmp_nm_ord_guided_chunked = 196,
426 kmp_nm_ord_runtime = 197,
428 kmp_nm_ord_trapezoidal = 199,
431 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
432 we need to distinguish the three possible cases (no modifier, monotonic
433 modifier, nonmonotonic modifier), we need separate bits for each modifier.
434 The absence of monotonic does not imply nonmonotonic, especially since 4.5
435 says that the behaviour of the "no modifier" case is implementation defined
436 in 4.5, but will become "nonmonotonic" in 5.0.
437
438 Since we're passing a full 32 bit value, we can use a couple of high bits
439 for these flags; out of paranoia we avoid the sign bit.
440
441 These modifiers can be or-ed into non-static schedules by the compiler to
442 pass the additional information. They will be stripped early in the
443 processing in __kmp_dispatch_init when setting up schedules, so most of the
444 code won't ever see schedules with these bits set. */
446 (1 << 29),
448 (1 << 30),
450#define SCHEDULE_WITHOUT_MODIFIERS(s) \
451 (enum sched_type)( \
453#define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
454#define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
455#define SCHEDULE_HAS_NO_MODIFIERS(s) \
456 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
457#define SCHEDULE_GET_MODIFIERS(s) \
458 ((enum sched_type)( \
459 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
460#define SCHEDULE_SET_MODIFIERS(s, m) \
461 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
462#define SCHEDULE_NONMONOTONIC 0
463#define SCHEDULE_MONOTONIC 1
464
467
468// Apply modifiers on internal kind to standard kind
469static inline void
470__kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
471 enum sched_type internal_kind) {
472 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
473 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
474 }
475}
476
477// Apply modifiers on standard kind to internal kind
478static inline void
479__kmp_sched_apply_mods_intkind(kmp_sched_t kind,
480 enum sched_type *internal_kind) {
481 if ((int)kind & (int)kmp_sched_monotonic) {
482 *internal_kind = (enum sched_type)((int)*internal_kind |
484 }
485}
486
487// Get standard schedule without modifiers
488static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
489 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
490}
491
492/* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
493typedef union kmp_r_sched {
494 struct {
495 enum sched_type r_sched_type;
496 int chunk;
497 };
498 kmp_int64 sched;
499} kmp_r_sched_t;
500
501extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
502// internal schedule types
503
504enum library_type {
505 library_none,
506 library_serial,
507 library_turnaround,
508 library_throughput
509};
510
511#if KMP_OS_LINUX
512enum clock_function_type {
513 clock_function_gettimeofday,
514 clock_function_clock_gettime
515};
516#endif /* KMP_OS_LINUX */
517
518#if KMP_MIC_SUPPORTED
519enum mic_type { non_mic, mic1, mic2, mic3, dummy };
520#endif
521
522/* -- fast reduction stuff ------------------------------------------------ */
523
524#undef KMP_FAST_REDUCTION_BARRIER
525#define KMP_FAST_REDUCTION_BARRIER 1
526
527#undef KMP_FAST_REDUCTION_CORE_DUO
528#if KMP_ARCH_X86 || KMP_ARCH_X86_64
529#define KMP_FAST_REDUCTION_CORE_DUO 1
530#endif
531
532enum _reduction_method {
533 reduction_method_not_defined = 0,
534 critical_reduce_block = (1 << 8),
535 atomic_reduce_block = (2 << 8),
536 tree_reduce_block = (3 << 8),
537 empty_reduce_block = (4 << 8)
538};
539
540// Description of the packed_reduction_method variable:
541// The packed_reduction_method variable consists of two enum types variables
542// that are packed together into 0-th byte and 1-st byte:
543// 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
544// barrier that will be used in fast reduction: bs_plain_barrier or
545// bs_reduction_barrier
546// 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
547// be used in fast reduction;
548// Reduction method is of 'enum _reduction_method' type and it's defined the way
549// so that the bits of 0-th byte are empty, so no need to execute a shift
550// instruction while packing/unpacking
551
552#if KMP_FAST_REDUCTION_BARRIER
553#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
554 ((reduction_method) | (barrier_type))
555
556#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
557 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
558
559#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
560 ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
561#else
562#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
563 (reduction_method)
564
565#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
566 (packed_reduction_method)
567
568#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
569#endif
570
571#define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
572 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
573 (which_reduction_block))
574
575#if KMP_FAST_REDUCTION_BARRIER
576#define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
577 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
578
579#define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
580 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
581#endif
582
583typedef int PACKED_REDUCTION_METHOD_T;
584
585/* -- end of fast reduction stuff ----------------------------------------- */
586
587#if KMP_OS_WINDOWS
588#define USE_CBLKDATA
589#if KMP_MSVC_COMPAT
590#pragma warning(push)
591#pragma warning(disable : 271 310)
592#endif
593#include <windows.h>
594#if KMP_MSVC_COMPAT
595#pragma warning(pop)
596#endif
597#endif
598
599#if KMP_OS_UNIX
600#include <dlfcn.h>
601#include <pthread.h>
602#endif
603
604enum kmp_hw_t : int {
605 KMP_HW_UNKNOWN = -1,
606 KMP_HW_SOCKET = 0,
607 KMP_HW_PROC_GROUP,
608 KMP_HW_NUMA,
609 KMP_HW_DIE,
610 KMP_HW_LLC,
611 KMP_HW_L3,
612 KMP_HW_TILE,
613 KMP_HW_MODULE,
614 KMP_HW_L2,
615 KMP_HW_L1,
616 KMP_HW_CORE,
617 KMP_HW_THREAD,
618 KMP_HW_LAST
619};
620
621typedef enum kmp_hw_core_type_t {
622 KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
623#if KMP_ARCH_X86 || KMP_ARCH_X86_64
624 KMP_HW_CORE_TYPE_ATOM = 0x20,
625 KMP_HW_CORE_TYPE_CORE = 0x40,
626 KMP_HW_MAX_NUM_CORE_TYPES = 3,
627#else
628 KMP_HW_MAX_NUM_CORE_TYPES = 1,
629#endif
630} kmp_hw_core_type_t;
631
632#define KMP_HW_MAX_NUM_CORE_EFFS 8
633
634#define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
635 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
636#define KMP_ASSERT_VALID_HW_TYPE(type) \
637 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
638
639#define KMP_FOREACH_HW_TYPE(type) \
640 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
641 type = (kmp_hw_t)((int)type + 1))
642
643const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
644const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
645const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
646
647/* Only Linux* OS and Windows* OS support thread affinity. */
648#if KMP_AFFINITY_SUPPORTED
649
650// GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
651#if KMP_OS_WINDOWS
652#if _MSC_VER < 1600 && KMP_MSVC_COMPAT
653typedef struct GROUP_AFFINITY {
654 KAFFINITY Mask;
655 WORD Group;
656 WORD Reserved[3];
657} GROUP_AFFINITY;
658#endif /* _MSC_VER < 1600 */
659#if KMP_GROUP_AFFINITY
660extern int __kmp_num_proc_groups;
661#else
662static const int __kmp_num_proc_groups = 1;
663#endif /* KMP_GROUP_AFFINITY */
664typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
665extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
666
667typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
668extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
669
670typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
671extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
672
673typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
674 GROUP_AFFINITY *);
675extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
676#endif /* KMP_OS_WINDOWS */
677
678#if KMP_USE_HWLOC
679extern hwloc_topology_t __kmp_hwloc_topology;
680extern int __kmp_hwloc_error;
681#endif
682
683extern size_t __kmp_affin_mask_size;
684#define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
685#define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
686#define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
687#define KMP_CPU_SET_ITERATE(i, mask) \
688 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
689#define KMP_CPU_SET(i, mask) (mask)->set(i)
690#define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
691#define KMP_CPU_CLR(i, mask) (mask)->clear(i)
692#define KMP_CPU_ZERO(mask) (mask)->zero()
693#define KMP_CPU_COPY(dest, src) (dest)->copy(src)
694#define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
695#define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
696#define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
697#define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
698#define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
699#define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
700#define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
701#define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
702#define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
703#define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
704#define KMP_CPU_ALLOC_ARRAY(arr, n) \
705 (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
706#define KMP_CPU_FREE_ARRAY(arr, n) \
707 __kmp_affinity_dispatch->deallocate_mask_array(arr)
708#define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
709#define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
710#define __kmp_get_system_affinity(mask, abort_bool) \
711 (mask)->get_system_affinity(abort_bool)
712#define __kmp_set_system_affinity(mask, abort_bool) \
713 (mask)->set_system_affinity(abort_bool)
714#define __kmp_get_proc_group(mask) (mask)->get_proc_group()
715
716class KMPAffinity {
717public:
718 class Mask {
719 public:
720 void *operator new(size_t n);
721 void operator delete(void *p);
722 void *operator new[](size_t n);
723 void operator delete[](void *p);
724 virtual ~Mask() {}
725 // Set bit i to 1
726 virtual void set(int i) {}
727 // Return bit i
728 virtual bool is_set(int i) const { return false; }
729 // Set bit i to 0
730 virtual void clear(int i) {}
731 // Zero out entire mask
732 virtual void zero() {}
733 // Copy src into this mask
734 virtual void copy(const Mask *src) {}
735 // this &= rhs
736 virtual void bitwise_and(const Mask *rhs) {}
737 // this |= rhs
738 virtual void bitwise_or(const Mask *rhs) {}
739 // this = ~this
740 virtual void bitwise_not() {}
741 // API for iterating over an affinity mask
742 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
743 virtual int begin() const { return 0; }
744 virtual int end() const { return 0; }
745 virtual int next(int previous) const { return 0; }
746#if KMP_OS_WINDOWS
747 virtual int set_process_affinity(bool abort_on_error) const { return -1; }
748#endif
749 // Set the system's affinity to this affinity mask's value
750 virtual int set_system_affinity(bool abort_on_error) const { return -1; }
751 // Set this affinity mask to the current system affinity
752 virtual int get_system_affinity(bool abort_on_error) { return -1; }
753 // Only 1 DWORD in the mask should have any procs set.
754 // Return the appropriate index, or -1 for an invalid mask.
755 virtual int get_proc_group() const { return -1; }
756 int get_max_cpu() const {
757 int cpu;
758 int max_cpu = -1;
759 KMP_CPU_SET_ITERATE(cpu, this) {
760 if (cpu > max_cpu)
761 max_cpu = cpu;
762 }
763 return max_cpu;
764 }
765 };
766 void *operator new(size_t n);
767 void operator delete(void *p);
768 // Need virtual destructor
769 virtual ~KMPAffinity() = default;
770 // Determine if affinity is capable
771 virtual void determine_capable(const char *env_var) {}
772 // Bind the current thread to os proc
773 virtual void bind_thread(int proc) {}
774 // Factory functions to allocate/deallocate a mask
775 virtual Mask *allocate_mask() { return nullptr; }
776 virtual void deallocate_mask(Mask *m) {}
777 virtual Mask *allocate_mask_array(int num) { return nullptr; }
778 virtual void deallocate_mask_array(Mask *m) {}
779 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
780 static void pick_api();
781 static void destroy_api();
782 enum api_type {
783 NATIVE_OS
784#if KMP_USE_HWLOC
785 ,
786 HWLOC
787#endif
788 };
789 virtual api_type get_api_type() const {
790 KMP_ASSERT(0);
791 return NATIVE_OS;
792 }
793
794private:
795 static bool picked_api;
796};
797
798typedef KMPAffinity::Mask kmp_affin_mask_t;
799extern KMPAffinity *__kmp_affinity_dispatch;
800
801class kmp_affinity_raii_t {
802 kmp_affin_mask_t *mask;
803 bool restored;
804
805public:
806 kmp_affinity_raii_t(const kmp_affin_mask_t *new_mask = nullptr)
807 : restored(false) {
808 if (KMP_AFFINITY_CAPABLE()) {
809 KMP_CPU_ALLOC(mask);
810 KMP_ASSERT(mask != NULL);
811 __kmp_get_system_affinity(mask, /*abort_on_error=*/true);
812 if (new_mask)
813 __kmp_set_system_affinity(new_mask, /*abort_on_error=*/true);
814 }
815 }
816 void restore() {
817 if (!restored && KMP_AFFINITY_CAPABLE()) {
818 __kmp_set_system_affinity(mask, /*abort_on_error=*/true);
819 KMP_CPU_FREE(mask);
820 }
821 restored = true;
822 }
823 ~kmp_affinity_raii_t() { restore(); }
824};
825
826// Declare local char buffers with this size for printing debug and info
827// messages, using __kmp_affinity_print_mask().
828#define KMP_AFFIN_MASK_PRINT_LEN 1024
829
830enum affinity_type {
831 affinity_none = 0,
832 affinity_physical,
833 affinity_logical,
834 affinity_compact,
835 affinity_scatter,
836 affinity_explicit,
837 affinity_balanced,
838 affinity_disabled, // not used outsize the env var parser
839 affinity_default
840};
841
842enum affinity_top_method {
843 affinity_top_method_all = 0, // try all (supported) methods, in order
844#if KMP_ARCH_X86 || KMP_ARCH_X86_64
845 affinity_top_method_apicid,
846 affinity_top_method_x2apicid,
847 affinity_top_method_x2apicid_1f,
848#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
849 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
850#if KMP_GROUP_AFFINITY
851 affinity_top_method_group,
852#endif /* KMP_GROUP_AFFINITY */
853 affinity_top_method_flat,
854#if KMP_USE_HWLOC
855 affinity_top_method_hwloc,
856#endif
857 affinity_top_method_default
858};
859
860#define affinity_respect_mask_default (2)
861
862typedef struct kmp_affinity_flags_t {
863 unsigned dups : 1;
864 unsigned verbose : 1;
865 unsigned warnings : 1;
866 unsigned respect : 2;
867 unsigned reset : 1;
868 unsigned initialized : 1;
869 unsigned reserved : 25;
870} kmp_affinity_flags_t;
871KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4);
872
873typedef struct kmp_affinity_ids_t {
874 int ids[KMP_HW_LAST];
875 int operator[](size_t idx) const { return ids[idx]; }
876 int &operator[](size_t idx) { return ids[idx]; }
877 kmp_affinity_ids_t &operator=(const kmp_affinity_ids_t &rhs) {
878 for (int i = 0; i < KMP_HW_LAST; ++i)
879 ids[i] = rhs[i];
880 return *this;
881 }
882} kmp_affinity_ids_t;
883
884typedef struct kmp_affinity_attrs_t {
885 int core_type : 8;
886 int core_eff : 8;
887 unsigned valid : 1;
888 unsigned reserved : 15;
889} kmp_affinity_attrs_t;
890#define KMP_AFFINITY_ATTRS_UNKNOWN \
891 { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 }
892
893typedef struct kmp_affinity_t {
894 char *proclist;
895 enum affinity_type type;
896 kmp_hw_t gran;
897 int gran_levels;
898 int compact;
899 int offset;
900 kmp_affinity_flags_t flags;
901 unsigned num_masks;
902 kmp_affin_mask_t *masks;
903 kmp_affinity_ids_t *ids;
904 kmp_affinity_attrs_t *attrs;
905 unsigned num_os_id_masks;
906 kmp_affin_mask_t *os_id_masks;
907 const char *env_var;
908} kmp_affinity_t;
909
910#define KMP_AFFINITY_INIT(env) \
911 { \
912 nullptr, affinity_default, KMP_HW_UNKNOWN, -1, 0, 0, \
913 {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE}, 0, \
914 nullptr, nullptr, nullptr, 0, nullptr, env \
915 }
916
917extern enum affinity_top_method __kmp_affinity_top_method;
918extern kmp_affinity_t __kmp_affinity;
919extern kmp_affinity_t __kmp_hh_affinity;
920extern kmp_affinity_t *__kmp_affinities[2];
921
922extern void __kmp_affinity_bind_thread(int which);
923
924extern kmp_affin_mask_t *__kmp_affin_fullMask;
925extern kmp_affin_mask_t *__kmp_affin_origMask;
926extern char *__kmp_cpuinfo_file;
927
928#endif /* KMP_AFFINITY_SUPPORTED */
929
930// This needs to be kept in sync with the values in omp.h !!!
931typedef enum kmp_proc_bind_t {
932 proc_bind_false = 0,
933 proc_bind_true,
934 proc_bind_primary,
935 proc_bind_close,
936 proc_bind_spread,
937 proc_bind_intel, // use KMP_AFFINITY interface
938 proc_bind_default
939} kmp_proc_bind_t;
940
941typedef struct kmp_nested_proc_bind_t {
942 kmp_proc_bind_t *bind_types;
943 int size;
944 int used;
945} kmp_nested_proc_bind_t;
946
947extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
948extern kmp_proc_bind_t __kmp_teams_proc_bind;
949
950extern int __kmp_display_affinity;
951extern char *__kmp_affinity_format;
952static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
953#if OMPT_SUPPORT
954extern int __kmp_tool;
955extern char *__kmp_tool_libraries;
956#endif // OMPT_SUPPORT
957
958#if KMP_AFFINITY_SUPPORTED
959#define KMP_PLACE_ALL (-1)
960#define KMP_PLACE_UNDEFINED (-2)
961// Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
962#define KMP_AFFINITY_NON_PROC_BIND \
963 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
964 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
965 (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced))
966#endif /* KMP_AFFINITY_SUPPORTED */
967
968extern int __kmp_affinity_num_places;
969
970typedef enum kmp_cancel_kind_t {
971 cancel_noreq = 0,
972 cancel_parallel = 1,
973 cancel_loop = 2,
974 cancel_sections = 3,
975 cancel_taskgroup = 4
976} kmp_cancel_kind_t;
977
978// KMP_HW_SUBSET support:
979typedef struct kmp_hws_item {
980 int num;
981 int offset;
982} kmp_hws_item_t;
983
984extern kmp_hws_item_t __kmp_hws_socket;
985extern kmp_hws_item_t __kmp_hws_die;
986extern kmp_hws_item_t __kmp_hws_node;
987extern kmp_hws_item_t __kmp_hws_tile;
988extern kmp_hws_item_t __kmp_hws_core;
989extern kmp_hws_item_t __kmp_hws_proc;
990extern int __kmp_hws_requested;
991extern int __kmp_hws_abs_flag; // absolute or per-item number requested
992
993/* ------------------------------------------------------------------------ */
994
995#define KMP_PAD(type, sz) \
996 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
997
998// We need to avoid using -1 as a GTID as +1 is added to the gtid
999// when storing it in a lock, and the value 0 is reserved.
1000#define KMP_GTID_DNE (-2) /* Does not exist */
1001#define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
1002#define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
1003#define KMP_GTID_UNKNOWN (-5) /* Is not known */
1004#define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
1005
1006/* OpenMP 5.0 Memory Management support */
1007
1008#ifndef __OMP_H
1009// Duplicate type definitions from omp.h
1010typedef uintptr_t omp_uintptr_t;
1011
1012typedef enum {
1013 omp_atk_sync_hint = 1,
1014 omp_atk_alignment = 2,
1015 omp_atk_access = 3,
1016 omp_atk_pool_size = 4,
1017 omp_atk_fallback = 5,
1018 omp_atk_fb_data = 6,
1019 omp_atk_pinned = 7,
1020 omp_atk_partition = 8
1021} omp_alloctrait_key_t;
1022
1023typedef enum {
1024 omp_atv_false = 0,
1025 omp_atv_true = 1,
1026 omp_atv_contended = 3,
1027 omp_atv_uncontended = 4,
1028 omp_atv_serialized = 5,
1029 omp_atv_sequential = omp_atv_serialized, // (deprecated)
1030 omp_atv_private = 6,
1031 omp_atv_all = 7,
1032 omp_atv_thread = 8,
1033 omp_atv_pteam = 9,
1034 omp_atv_cgroup = 10,
1035 omp_atv_default_mem_fb = 11,
1036 omp_atv_null_fb = 12,
1037 omp_atv_abort_fb = 13,
1038 omp_atv_allocator_fb = 14,
1039 omp_atv_environment = 15,
1040 omp_atv_nearest = 16,
1041 omp_atv_blocked = 17,
1042 omp_atv_interleaved = 18
1043} omp_alloctrait_value_t;
1044#define omp_atv_default ((omp_uintptr_t)-1)
1045
1046typedef void *omp_memspace_handle_t;
1047extern omp_memspace_handle_t const omp_default_mem_space;
1048extern omp_memspace_handle_t const omp_large_cap_mem_space;
1049extern omp_memspace_handle_t const omp_const_mem_space;
1050extern omp_memspace_handle_t const omp_high_bw_mem_space;
1051extern omp_memspace_handle_t const omp_low_lat_mem_space;
1052extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
1053extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
1054extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
1055
1056typedef struct {
1057 omp_alloctrait_key_t key;
1058 omp_uintptr_t value;
1059} omp_alloctrait_t;
1060
1061typedef void *omp_allocator_handle_t;
1062extern omp_allocator_handle_t const omp_null_allocator;
1063extern omp_allocator_handle_t const omp_default_mem_alloc;
1064extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
1065extern omp_allocator_handle_t const omp_const_mem_alloc;
1066extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
1067extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
1068extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
1069extern omp_allocator_handle_t const omp_pteam_mem_alloc;
1070extern omp_allocator_handle_t const omp_thread_mem_alloc;
1071extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
1072extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
1073extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
1074extern omp_allocator_handle_t const kmp_max_mem_alloc;
1075extern omp_allocator_handle_t __kmp_def_allocator;
1076
1077// end of duplicate type definitions from omp.h
1078#endif
1079
1080extern int __kmp_memkind_available;
1081
1082typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1083
1084typedef struct kmp_allocator_t {
1085 omp_memspace_handle_t memspace;
1086 void **memkind; // pointer to memkind
1087 size_t alignment;
1088 omp_alloctrait_value_t fb;
1089 kmp_allocator_t *fb_data;
1090 kmp_uint64 pool_size;
1091 kmp_uint64 pool_used;
1092 bool pinned;
1093} kmp_allocator_t;
1094
1095extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1096 omp_memspace_handle_t,
1097 int ntraits,
1098 omp_alloctrait_t traits[]);
1099extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1100extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1101extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1102// external interfaces, may be used by compiler
1103extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1104extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1105 omp_allocator_handle_t al);
1106extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1107 omp_allocator_handle_t al);
1108extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1109 omp_allocator_handle_t al,
1110 omp_allocator_handle_t free_al);
1111extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1112// internal interfaces, contain real implementation
1113extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1114 omp_allocator_handle_t al);
1115extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1116 omp_allocator_handle_t al);
1117extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1118 omp_allocator_handle_t al,
1119 omp_allocator_handle_t free_al);
1120extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1121
1122extern void __kmp_init_memkind();
1123extern void __kmp_fini_memkind();
1124extern void __kmp_init_target_mem();
1125
1126/* ------------------------------------------------------------------------ */
1127
1128#if ENABLE_LIBOMPTARGET
1129extern void __kmp_init_target_task();
1130#endif
1131
1132/* ------------------------------------------------------------------------ */
1133
1134#define KMP_UINT64_MAX \
1135 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1136
1137#define KMP_MIN_NTH 1
1138
1139#ifndef KMP_MAX_NTH
1140#if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1141#define KMP_MAX_NTH PTHREAD_THREADS_MAX
1142#else
1143#define KMP_MAX_NTH INT_MAX
1144#endif
1145#endif /* KMP_MAX_NTH */
1146
1147#ifdef PTHREAD_STACK_MIN
1148#define KMP_MIN_STKSIZE ((size_t)PTHREAD_STACK_MIN)
1149#else
1150#define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1151#endif
1152
1153#define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1154
1155#if KMP_ARCH_X86
1156#define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1157#elif KMP_ARCH_X86_64
1158#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1159#define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1160#else
1161#define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1162#endif
1163
1164#define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1165#define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1166#define KMP_MAX_MALLOC_POOL_INCR \
1167 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1168
1169#define KMP_MIN_STKOFFSET (0)
1170#define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1171#if KMP_OS_DARWIN
1172#define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1173#else
1174#define KMP_DEFAULT_STKOFFSET CACHE_LINE
1175#endif
1176
1177#define KMP_MIN_STKPADDING (0)
1178#define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1179
1180#define KMP_BLOCKTIME_MULTIPLIER \
1181 (1000) /* number of blocktime units per second */
1182#define KMP_MIN_BLOCKTIME (0)
1183#define KMP_MAX_BLOCKTIME \
1184 (INT_MAX) /* Must be this for "infinite" setting the work */
1185
1186/* __kmp_blocktime is in milliseconds */
1187#define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200))
1188
1189#if KMP_USE_MONITOR
1190#define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1191#define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1192#define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1193
1194/* Calculate new number of monitor wakeups for a specific block time based on
1195 previous monitor_wakeups. Only allow increasing number of wakeups */
1196#define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1197 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1198 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1199 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1200 ? (monitor_wakeups) \
1201 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1202
1203/* Calculate number of intervals for a specific block time based on
1204 monitor_wakeups */
1205#define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1206 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1207 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1208#else
1209#define KMP_BLOCKTIME(team, tid) \
1210 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1211#if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1212// HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1213extern kmp_uint64 __kmp_ticks_per_msec;
1214#if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1215#define KMP_NOW() ((kmp_uint64)_rdtsc())
1216#else
1217#define KMP_NOW() __kmp_hardware_timestamp()
1218#endif
1219#define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1220#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1221 (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1222#define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1223#else
1224// System time is retrieved sporadically while blocking.
1225extern kmp_uint64 __kmp_now_nsec();
1226#define KMP_NOW() __kmp_now_nsec()
1227#define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1228#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1229 (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1230#define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1231#endif
1232#endif // KMP_USE_MONITOR
1233
1234#define KMP_MIN_STATSCOLS 40
1235#define KMP_MAX_STATSCOLS 4096
1236#define KMP_DEFAULT_STATSCOLS 80
1237
1238#define KMP_MIN_INTERVAL 0
1239#define KMP_MAX_INTERVAL (INT_MAX - 1)
1240#define KMP_DEFAULT_INTERVAL 0
1241
1242#define KMP_MIN_CHUNK 1
1243#define KMP_MAX_CHUNK (INT_MAX - 1)
1244#define KMP_DEFAULT_CHUNK 1
1245
1246#define KMP_MIN_DISP_NUM_BUFF 1
1247#define KMP_DFLT_DISP_NUM_BUFF 7
1248#define KMP_MAX_DISP_NUM_BUFF 4096
1249
1250#define KMP_MAX_ORDERED 8
1251
1252#define KMP_MAX_FIELDS 32
1253
1254#define KMP_MAX_BRANCH_BITS 31
1255
1256#define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1257
1258#define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1259
1260#define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1261
1262/* Minimum number of threads before switch to TLS gtid (experimentally
1263 determined) */
1264/* josh TODO: what about OS X* tuning? */
1265#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1266#define KMP_TLS_GTID_MIN 5
1267#else
1268#define KMP_TLS_GTID_MIN INT_MAX
1269#endif
1270
1271#define KMP_MASTER_TID(tid) (0 == (tid))
1272#define KMP_WORKER_TID(tid) (0 != (tid))
1273
1274#define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1275#define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1276#define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1277
1278#ifndef TRUE
1279#define FALSE 0
1280#define TRUE (!FALSE)
1281#endif
1282
1283/* NOTE: all of the following constants must be even */
1284
1285#if KMP_OS_WINDOWS
1286#define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1287#define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1288#elif KMP_OS_LINUX
1289#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1290#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1291#elif KMP_OS_DARWIN
1292/* TODO: tune for KMP_OS_DARWIN */
1293#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1294#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1295#elif KMP_OS_DRAGONFLY
1296/* TODO: tune for KMP_OS_DRAGONFLY */
1297#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1298#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1299#elif KMP_OS_FREEBSD
1300/* TODO: tune for KMP_OS_FREEBSD */
1301#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1302#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1303#elif KMP_OS_NETBSD
1304/* TODO: tune for KMP_OS_NETBSD */
1305#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1306#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1307#elif KMP_OS_HURD
1308/* TODO: tune for KMP_OS_HURD */
1309#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1310#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1311#elif KMP_OS_OPENBSD
1312/* TODO: tune for KMP_OS_OPENBSD */
1313#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1314#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1315#endif
1316
1317#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1318typedef struct kmp_cpuid {
1319 kmp_uint32 eax;
1320 kmp_uint32 ebx;
1321 kmp_uint32 ecx;
1322 kmp_uint32 edx;
1323} kmp_cpuid_t;
1324
1325typedef struct kmp_cpuinfo_flags_t {
1326 unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1327 unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1328 unsigned hybrid : 1;
1329 unsigned reserved : 29; // Ensure size of 32 bits
1330} kmp_cpuinfo_flags_t;
1331
1332typedef struct kmp_cpuinfo {
1333 int initialized; // If 0, other fields are not initialized.
1334 int signature; // CPUID(1).EAX
1335 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1336 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1337 // Model << 4 ) + Model)
1338 int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1339 kmp_cpuinfo_flags_t flags;
1340 int apic_id;
1341 int physical_id;
1342 int logical_id;
1343 kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1344 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1345} kmp_cpuinfo_t;
1346
1347extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1348
1349#if KMP_OS_UNIX
1350// subleaf is only needed for cache and topology discovery and can be set to
1351// zero in most cases
1352static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1353 __asm__ __volatile__("cpuid"
1354 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1355 : "a"(leaf), "c"(subleaf));
1356}
1357// Load p into FPU control word
1358static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1359 __asm__ __volatile__("fldcw %0" : : "m"(*p));
1360}
1361// Store FPU control word into p
1362static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1363 __asm__ __volatile__("fstcw %0" : "=m"(*p));
1364}
1365static inline void __kmp_clear_x87_fpu_status_word() {
1366#if KMP_MIC
1367 // 32-bit protected mode x87 FPU state
1368 struct x87_fpu_state {
1369 unsigned cw;
1370 unsigned sw;
1371 unsigned tw;
1372 unsigned fip;
1373 unsigned fips;
1374 unsigned fdp;
1375 unsigned fds;
1376 };
1377 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1378 __asm__ __volatile__("fstenv %0\n\t" // store FP env
1379 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1380 "fldenv %0\n\t" // load FP env back
1381 : "+m"(fpu_state), "+m"(fpu_state.sw));
1382#else
1383 __asm__ __volatile__("fnclex");
1384#endif // KMP_MIC
1385}
1386#if __SSE__
1387static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1388static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1389#else
1390static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1391static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1392#endif
1393#else
1394// Windows still has these as external functions in assembly file
1395extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1396extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1397extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1398extern void __kmp_clear_x87_fpu_status_word();
1399static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1400static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1401#endif // KMP_OS_UNIX
1402
1403#define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1404
1405// User-level Monitor/Mwait
1406#if KMP_HAVE_UMWAIT
1407// We always try for UMWAIT first
1408#if KMP_HAVE_WAITPKG_INTRINSICS
1409#if KMP_HAVE_IMMINTRIN_H
1410#include <immintrin.h>
1411#elif KMP_HAVE_INTRIN_H
1412#include <intrin.h>
1413#endif
1414#endif // KMP_HAVE_WAITPKG_INTRINSICS
1415
1416KMP_ATTRIBUTE_TARGET_WAITPKG
1417static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1418#if !KMP_HAVE_WAITPKG_INTRINSICS
1419 uint32_t timeHi = uint32_t(counter >> 32);
1420 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1421 char flag;
1422 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1423 "setb %0"
1424 // The "=q" restraint means any register accessible as rl
1425 // in 32-bit mode: a, b, c, and d;
1426 // in 64-bit mode: any integer register
1427 : "=q"(flag)
1428 : "a"(timeLo), "d"(timeHi), "c"(hint)
1429 :);
1430 return flag;
1431#else
1432 return _tpause(hint, counter);
1433#endif
1434}
1435KMP_ATTRIBUTE_TARGET_WAITPKG
1436static inline void __kmp_umonitor(void *cacheline) {
1437#if !KMP_HAVE_WAITPKG_INTRINSICS
1438 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1439 :
1440 : "a"(cacheline)
1441 :);
1442#else
1443 _umonitor(cacheline);
1444#endif
1445}
1446KMP_ATTRIBUTE_TARGET_WAITPKG
1447static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1448#if !KMP_HAVE_WAITPKG_INTRINSICS
1449 uint32_t timeHi = uint32_t(counter >> 32);
1450 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1451 char flag;
1452 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1453 "setb %0"
1454 // The "=q" restraint means any register accessible as rl
1455 // in 32-bit mode: a, b, c, and d;
1456 // in 64-bit mode: any integer register
1457 : "=q"(flag)
1458 : "a"(timeLo), "d"(timeHi), "c"(hint)
1459 :);
1460 return flag;
1461#else
1462 return _umwait(hint, counter);
1463#endif
1464}
1465#elif KMP_HAVE_MWAIT
1466#if KMP_OS_UNIX
1467#include <pmmintrin.h>
1468#else
1469#include <intrin.h>
1470#endif
1471#if KMP_OS_UNIX
1472__attribute__((target("sse3")))
1473#endif
1474static inline void
1475__kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1476 _mm_monitor(cacheline, extensions, hints);
1477}
1478#if KMP_OS_UNIX
1479__attribute__((target("sse3")))
1480#endif
1481static inline void
1482__kmp_mm_mwait(unsigned extensions, unsigned hints) {
1483 _mm_mwait(extensions, hints);
1484}
1485#endif // KMP_HAVE_UMWAIT
1486
1487#if KMP_ARCH_X86
1488extern void __kmp_x86_pause(void);
1489#elif KMP_MIC
1490// Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1491// regression after removal of extra PAUSE from spin loops. Changing
1492// the delay from 100 to 300 showed even better performance than double PAUSE
1493// on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1494static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1495#else
1496static inline void __kmp_x86_pause(void) { _mm_pause(); }
1497#endif
1498#define KMP_CPU_PAUSE() __kmp_x86_pause()
1499#elif KMP_ARCH_PPC64
1500#define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1501#define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1502#define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1503#define KMP_CPU_PAUSE() \
1504 do { \
1505 KMP_PPC64_PRI_LOW(); \
1506 KMP_PPC64_PRI_MED(); \
1507 KMP_PPC64_PRI_LOC_MB(); \
1508 } while (0)
1509#else
1510#define KMP_CPU_PAUSE() /* nothing to do */
1511#endif
1512
1513#define KMP_INIT_YIELD(count) \
1514 { (count) = __kmp_yield_init; }
1515
1516#define KMP_INIT_BACKOFF(time) \
1517 { (time) = __kmp_pause_init; }
1518
1519#define KMP_OVERSUBSCRIBED \
1520 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1521
1522#define KMP_TRY_YIELD \
1523 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1524
1525#define KMP_TRY_YIELD_OVERSUB \
1526 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1527
1528#define KMP_YIELD(cond) \
1529 { \
1530 KMP_CPU_PAUSE(); \
1531 if ((cond) && (KMP_TRY_YIELD)) \
1532 __kmp_yield(); \
1533 }
1534
1535#define KMP_YIELD_OVERSUB() \
1536 { \
1537 KMP_CPU_PAUSE(); \
1538 if ((KMP_TRY_YIELD_OVERSUB)) \
1539 __kmp_yield(); \
1540 }
1541
1542// Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1543// there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1544#define KMP_YIELD_SPIN(count) \
1545 { \
1546 KMP_CPU_PAUSE(); \
1547 if (KMP_TRY_YIELD) { \
1548 (count) -= 2; \
1549 if (!(count)) { \
1550 __kmp_yield(); \
1551 (count) = __kmp_yield_next; \
1552 } \
1553 } \
1554 }
1555
1556// If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1557// (C0.2) state, which improves performance of other SMT threads on the same
1558// core, otherwise, use the fast (C0.1) default state, or whatever the user has
1559// requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1560// available, fall back to the regular CPU pause and yield combination.
1561#if KMP_HAVE_UMWAIT
1562#define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF)
1563#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1564 { \
1565 if (__kmp_tpause_enabled) { \
1566 if (KMP_OVERSUBSCRIBED) { \
1567 __kmp_tpause(0, (time)); \
1568 } else { \
1569 __kmp_tpause(__kmp_tpause_hint, (time)); \
1570 } \
1571 (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \
1572 } else { \
1573 KMP_CPU_PAUSE(); \
1574 if ((KMP_TRY_YIELD_OVERSUB)) { \
1575 __kmp_yield(); \
1576 } else if (__kmp_use_yield == 1) { \
1577 (count) -= 2; \
1578 if (!(count)) { \
1579 __kmp_yield(); \
1580 (count) = __kmp_yield_next; \
1581 } \
1582 } \
1583 } \
1584 }
1585#else
1586#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1587 { \
1588 KMP_CPU_PAUSE(); \
1589 if ((KMP_TRY_YIELD_OVERSUB)) \
1590 __kmp_yield(); \
1591 else if (__kmp_use_yield == 1) { \
1592 (count) -= 2; \
1593 if (!(count)) { \
1594 __kmp_yield(); \
1595 (count) = __kmp_yield_next; \
1596 } \
1597 } \
1598 }
1599#endif // KMP_HAVE_UMWAIT
1600
1601/* ------------------------------------------------------------------------ */
1602/* Support datatypes for the orphaned construct nesting checks. */
1603/* ------------------------------------------------------------------------ */
1604
1605/* When adding to this enum, add its corresponding string in cons_text_c[]
1606 * array in kmp_error.cpp */
1607enum cons_type {
1608 ct_none,
1609 ct_parallel,
1610 ct_pdo,
1611 ct_pdo_ordered,
1612 ct_psections,
1613 ct_psingle,
1614 ct_critical,
1615 ct_ordered_in_parallel,
1616 ct_ordered_in_pdo,
1617 ct_master,
1618 ct_reduce,
1619 ct_barrier,
1620 ct_masked
1621};
1622
1623#define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1624
1625struct cons_data {
1626 ident_t const *ident;
1627 enum cons_type type;
1628 int prev;
1629 kmp_user_lock_p
1630 name; /* address exclusively for critical section name comparison */
1631};
1632
1633struct cons_header {
1634 int p_top, w_top, s_top;
1635 int stack_size, stack_top;
1636 struct cons_data *stack_data;
1637};
1638
1639struct kmp_region_info {
1640 char *text;
1641 int offset[KMP_MAX_FIELDS];
1642 int length[KMP_MAX_FIELDS];
1643};
1644
1645/* ---------------------------------------------------------------------- */
1646/* ---------------------------------------------------------------------- */
1647
1648#if KMP_OS_WINDOWS
1649typedef HANDLE kmp_thread_t;
1650typedef DWORD kmp_key_t;
1651#endif /* KMP_OS_WINDOWS */
1652
1653#if KMP_OS_UNIX
1654typedef pthread_t kmp_thread_t;
1655typedef pthread_key_t kmp_key_t;
1656#endif
1657
1658extern kmp_key_t __kmp_gtid_threadprivate_key;
1659
1660typedef struct kmp_sys_info {
1661 long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1662 long minflt; /* the number of page faults serviced without any I/O */
1663 long majflt; /* the number of page faults serviced that required I/O */
1664 long nswap; /* the number of times a process was "swapped" out of memory */
1665 long inblock; /* the number of times the file system had to perform input */
1666 long oublock; /* the number of times the file system had to perform output */
1667 long nvcsw; /* the number of times a context switch was voluntarily */
1668 long nivcsw; /* the number of times a context switch was forced */
1669} kmp_sys_info_t;
1670
1671#if USE_ITT_BUILD
1672// We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1673// required type here. Later we will check the type meets requirements.
1674typedef int kmp_itt_mark_t;
1675#define KMP_ITT_DEBUG 0
1676#endif /* USE_ITT_BUILD */
1677
1678typedef kmp_int32 kmp_critical_name[8];
1679
1689typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1690typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1691 ...);
1692
1697/* ---------------------------------------------------------------------------
1698 */
1699/* Threadprivate initialization/finalization function declarations */
1700
1701/* for non-array objects: __kmpc_threadprivate_register() */
1702
1707typedef void *(*kmpc_ctor)(void *);
1708
1713typedef void (*kmpc_dtor)(
1714 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1715 compiler */
1720typedef void *(*kmpc_cctor)(void *, void *);
1721
1722/* for array objects: __kmpc_threadprivate_register_vec() */
1723/* First arg: "this" pointer */
1724/* Last arg: number of array elements */
1730typedef void *(*kmpc_ctor_vec)(void *, size_t);
1736typedef void (*kmpc_dtor_vec)(void *, size_t);
1742typedef void *(*kmpc_cctor_vec)(void *, void *,
1743 size_t); /* function unused by compiler */
1744
1749/* keeps tracked of threadprivate cache allocations for cleanup later */
1750typedef struct kmp_cached_addr {
1751 void **addr; /* address of allocated cache */
1752 void ***compiler_cache; /* pointer to compiler's cache */
1753 void *data; /* pointer to global data */
1754 struct kmp_cached_addr *next; /* pointer to next cached address */
1755} kmp_cached_addr_t;
1756
1757struct private_data {
1758 struct private_data *next; /* The next descriptor in the list */
1759 void *data; /* The data buffer for this descriptor */
1760 int more; /* The repeat count for this descriptor */
1761 size_t size; /* The data size for this descriptor */
1762};
1763
1764struct private_common {
1765 struct private_common *next;
1766 struct private_common *link;
1767 void *gbl_addr;
1768 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1769 size_t cmn_size;
1770};
1771
1772struct shared_common {
1773 struct shared_common *next;
1774 struct private_data *pod_init;
1775 void *obj_init;
1776 void *gbl_addr;
1777 union {
1778 kmpc_ctor ctor;
1779 kmpc_ctor_vec ctorv;
1780 } ct;
1781 union {
1782 kmpc_cctor cctor;
1783 kmpc_cctor_vec cctorv;
1784 } cct;
1785 union {
1786 kmpc_dtor dtor;
1787 kmpc_dtor_vec dtorv;
1788 } dt;
1789 size_t vec_len;
1790 int is_vec;
1791 size_t cmn_size;
1792};
1793
1794#define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1795#define KMP_HASH_TABLE_SIZE \
1796 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1797#define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1798#define KMP_HASH(x) \
1799 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1800
1801struct common_table {
1802 struct private_common *data[KMP_HASH_TABLE_SIZE];
1803};
1804
1805struct shared_table {
1806 struct shared_common *data[KMP_HASH_TABLE_SIZE];
1807};
1808
1809/* ------------------------------------------------------------------------ */
1810
1811#if KMP_USE_HIER_SCHED
1812// Shared barrier data that exists inside a single unit of the scheduling
1813// hierarchy
1814typedef struct kmp_hier_private_bdata_t {
1815 kmp_int32 num_active;
1816 kmp_uint64 index;
1817 kmp_uint64 wait_val[2];
1818} kmp_hier_private_bdata_t;
1819#endif
1820
1821typedef struct kmp_sched_flags {
1822 unsigned ordered : 1;
1823 unsigned nomerge : 1;
1824 unsigned contains_last : 1;
1825#if KMP_USE_HIER_SCHED
1826 unsigned use_hier : 1;
1827 unsigned unused : 28;
1828#else
1829 unsigned unused : 29;
1830#endif
1831} kmp_sched_flags_t;
1832
1833KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1834
1835#if KMP_STATIC_STEAL_ENABLED
1836typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1837 kmp_int32 count;
1838 kmp_int32 ub;
1839 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1840 kmp_int32 lb;
1841 kmp_int32 st;
1842 kmp_int32 tc;
1843 kmp_lock_t *steal_lock; // lock used for chunk stealing
1844 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1845 // a) parm3 is properly aligned and
1846 // b) all parm1-4 are on the same cache line.
1847 // Because of parm1-4 are used together, performance seems to be better
1848 // if they are on the same cache line (not measured though).
1849
1850 struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1851 kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1852 kmp_int32 parm2; // make no real change at least while padding is off.
1853 kmp_int32 parm3;
1854 kmp_int32 parm4;
1855 };
1856
1857 kmp_uint32 ordered_lower;
1858 kmp_uint32 ordered_upper;
1859#if KMP_OS_WINDOWS
1860 kmp_int32 last_upper;
1861#endif /* KMP_OS_WINDOWS */
1862} dispatch_private_info32_t;
1863
1864typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1865 kmp_int64 count; // current chunk number for static & static-steal scheduling
1866 kmp_int64 ub; /* upper-bound */
1867 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1868 kmp_int64 lb; /* lower-bound */
1869 kmp_int64 st; /* stride */
1870 kmp_int64 tc; /* trip count (number of iterations) */
1871 kmp_lock_t *steal_lock; // lock used for chunk stealing
1872 /* parm[1-4] are used in different ways by different scheduling algorithms */
1873
1874 // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1875 // a) parm3 is properly aligned and
1876 // b) all parm1-4 are in the same cache line.
1877 // Because of parm1-4 are used together, performance seems to be better
1878 // if they are in the same line (not measured though).
1879
1880 struct KMP_ALIGN(32) {
1881 kmp_int64 parm1;
1882 kmp_int64 parm2;
1883 kmp_int64 parm3;
1884 kmp_int64 parm4;
1885 };
1886
1887 kmp_uint64 ordered_lower;
1888 kmp_uint64 ordered_upper;
1889#if KMP_OS_WINDOWS
1890 kmp_int64 last_upper;
1891#endif /* KMP_OS_WINDOWS */
1892} dispatch_private_info64_t;
1893#else /* KMP_STATIC_STEAL_ENABLED */
1894typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1895 kmp_int32 lb;
1896 kmp_int32 ub;
1897 kmp_int32 st;
1898 kmp_int32 tc;
1899
1900 kmp_int32 parm1;
1901 kmp_int32 parm2;
1902 kmp_int32 parm3;
1903 kmp_int32 parm4;
1904
1905 kmp_int32 count;
1906
1907 kmp_uint32 ordered_lower;
1908 kmp_uint32 ordered_upper;
1909#if KMP_OS_WINDOWS
1910 kmp_int32 last_upper;
1911#endif /* KMP_OS_WINDOWS */
1912} dispatch_private_info32_t;
1913
1914typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1915 kmp_int64 lb; /* lower-bound */
1916 kmp_int64 ub; /* upper-bound */
1917 kmp_int64 st; /* stride */
1918 kmp_int64 tc; /* trip count (number of iterations) */
1919
1920 /* parm[1-4] are used in different ways by different scheduling algorithms */
1921 kmp_int64 parm1;
1922 kmp_int64 parm2;
1923 kmp_int64 parm3;
1924 kmp_int64 parm4;
1925
1926 kmp_int64 count; /* current chunk number for static scheduling */
1927
1928 kmp_uint64 ordered_lower;
1929 kmp_uint64 ordered_upper;
1930#if KMP_OS_WINDOWS
1931 kmp_int64 last_upper;
1932#endif /* KMP_OS_WINDOWS */
1933} dispatch_private_info64_t;
1934#endif /* KMP_STATIC_STEAL_ENABLED */
1935
1936typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1937 union private_info {
1938 dispatch_private_info32_t p32;
1939 dispatch_private_info64_t p64;
1940 } u;
1941 enum sched_type schedule; /* scheduling algorithm */
1942 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1943 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
1944 kmp_int32 ordered_bumped;
1945 // Stack of buffers for nest of serial regions
1946 struct dispatch_private_info *next;
1947 kmp_int32 type_size; /* the size of types in private_info */
1948#if KMP_USE_HIER_SCHED
1949 kmp_int32 hier_id;
1950 void *parent; /* hierarchical scheduling parent pointer */
1951#endif
1952 enum cons_type pushed_ws;
1953} dispatch_private_info_t;
1954
1955typedef struct dispatch_shared_info32 {
1956 /* chunk index under dynamic, number of idle threads under static-steal;
1957 iteration index otherwise */
1958 volatile kmp_uint32 iteration;
1959 volatile kmp_int32 num_done;
1960 volatile kmp_uint32 ordered_iteration;
1961 // Dummy to retain the structure size after making ordered_iteration scalar
1962 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1963} dispatch_shared_info32_t;
1964
1965typedef struct dispatch_shared_info64 {
1966 /* chunk index under dynamic, number of idle threads under static-steal;
1967 iteration index otherwise */
1968 volatile kmp_uint64 iteration;
1969 volatile kmp_int64 num_done;
1970 volatile kmp_uint64 ordered_iteration;
1971 // Dummy to retain the structure size after making ordered_iteration scalar
1972 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1973} dispatch_shared_info64_t;
1974
1975typedef struct dispatch_shared_info {
1976 union shared_info {
1977 dispatch_shared_info32_t s32;
1978 dispatch_shared_info64_t s64;
1979 } u;
1980 volatile kmp_uint32 buffer_index;
1981 volatile kmp_int32 doacross_buf_idx; // teamwise index
1982 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1983 kmp_int32 doacross_num_done; // count finished threads
1984#if KMP_USE_HIER_SCHED
1985 void *hier;
1986#endif
1987#if KMP_USE_HWLOC
1988 // When linking with libhwloc, the ORDERED EPCC test slows down on big
1989 // machines (> 48 cores). Performance analysis showed that a cache thrash
1990 // was occurring and this padding helps alleviate the problem.
1991 char padding[64];
1992#endif
1993} dispatch_shared_info_t;
1994
1995typedef struct kmp_disp {
1996 /* Vector for ORDERED SECTION */
1997 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1998 /* Vector for END ORDERED SECTION */
1999 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
2000
2001 dispatch_shared_info_t *th_dispatch_sh_current;
2002 dispatch_private_info_t *th_dispatch_pr_current;
2003
2004 dispatch_private_info_t *th_disp_buffer;
2005 kmp_uint32 th_disp_index;
2006 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
2007 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
2008 kmp_int64 *th_doacross_info; // info on loop bounds
2009#if KMP_USE_INTERNODE_ALIGNMENT
2010 char more_padding[INTERNODE_CACHE_LINE];
2011#endif
2012} kmp_disp_t;
2013
2014/* ------------------------------------------------------------------------ */
2015/* Barrier stuff */
2016
2017/* constants for barrier state update */
2018#define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
2019#define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
2020#define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
2021#define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
2022
2023#define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
2024#define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
2025#define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
2026
2027#if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
2028#error "Barrier sleep bit must be smaller than barrier bump bit"
2029#endif
2030#if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
2031#error "Barrier unused bit must be smaller than barrier bump bit"
2032#endif
2033
2034// Constants for release barrier wait state: currently, hierarchical only
2035#define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
2036#define KMP_BARRIER_OWN_FLAG \
2037 1 // Normal state; worker waiting on own b_go flag in release
2038#define KMP_BARRIER_PARENT_FLAG \
2039 2 // Special state; worker waiting on parent's b_go flag in release
2040#define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
2041 3 // Special state; tells worker to shift from parent to own b_go
2042#define KMP_BARRIER_SWITCHING \
2043 4 // Special state; worker resets appropriate flag on wake-up
2044
2045#define KMP_NOT_SAFE_TO_REAP \
2046 0 // Thread th_reap_state: not safe to reap (tasking)
2047#define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
2048
2049// The flag_type describes the storage used for the flag.
2050enum flag_type {
2051 flag32,
2052 flag64,
2053 atomic_flag64,
2054 flag_oncore,
2055 flag_unset
2056};
2057
2058enum barrier_type {
2059 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
2060 barriers if enabled) */
2061 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
2062#if KMP_FAST_REDUCTION_BARRIER
2063 bs_reduction_barrier, /* 2, All barriers that are used in reduction */
2064#endif // KMP_FAST_REDUCTION_BARRIER
2065 bs_last_barrier /* Just a placeholder to mark the end */
2066};
2067
2068// to work with reduction barriers just like with plain barriers
2069#if !KMP_FAST_REDUCTION_BARRIER
2070#define bs_reduction_barrier bs_plain_barrier
2071#endif // KMP_FAST_REDUCTION_BARRIER
2072
2073typedef enum kmp_bar_pat { /* Barrier communication patterns */
2074 bp_linear_bar =
2075 0, /* Single level (degenerate) tree */
2076 bp_tree_bar =
2077 1, /* Balanced tree with branching factor 2^n */
2078 bp_hyper_bar = 2, /* Hypercube-embedded tree with min
2079 branching factor 2^n */
2080 bp_hierarchical_bar = 3, /* Machine hierarchy tree */
2081 bp_dist_bar = 4, /* Distributed barrier */
2082 bp_last_bar /* Placeholder to mark the end */
2083} kmp_bar_pat_e;
2084
2085#define KMP_BARRIER_ICV_PUSH 1
2086
2087/* Record for holding the values of the internal controls stack records */
2088typedef struct kmp_internal_control {
2089 int serial_nesting_level; /* corresponds to the value of the
2090 th_team_serialized field */
2091 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2092 thread) */
2093 kmp_int8
2094 bt_set; /* internal control for whether blocktime is explicitly set */
2095 int blocktime; /* internal control for blocktime */
2096#if KMP_USE_MONITOR
2097 int bt_intervals; /* internal control for blocktime intervals */
2098#endif
2099 int nproc; /* internal control for #threads for next parallel region (per
2100 thread) */
2101 int thread_limit; /* internal control for thread-limit-var */
2102 int max_active_levels; /* internal control for max_active_levels */
2103 kmp_r_sched_t
2104 sched; /* internal control for runtime schedule {sched,chunk} pair */
2105 kmp_proc_bind_t proc_bind; /* internal control for affinity */
2106 kmp_int32 default_device; /* internal control for default device */
2107 struct kmp_internal_control *next;
2108} kmp_internal_control_t;
2109
2110static inline void copy_icvs(kmp_internal_control_t *dst,
2111 kmp_internal_control_t *src) {
2112 *dst = *src;
2113}
2114
2115/* Thread barrier needs volatile barrier fields */
2116typedef struct KMP_ALIGN_CACHE kmp_bstate {
2117 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2118 // uses of it). It is not explicitly aligned below, because we *don't* want
2119 // it to be padded -- instead, we fit b_go into the same cache line with
2120 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2121 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2122 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2123 // same NGO store
2124 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2125 KMP_ALIGN_CACHE volatile kmp_uint64
2126 b_arrived; // STATE => task reached synch point.
2127 kmp_uint32 *skip_per_level;
2128 kmp_uint32 my_level;
2129 kmp_int32 parent_tid;
2130 kmp_int32 old_tid;
2131 kmp_uint32 depth;
2132 struct kmp_bstate *parent_bar;
2133 kmp_team_t *team;
2134 kmp_uint64 leaf_state;
2135 kmp_uint32 nproc;
2136 kmp_uint8 base_leaf_kids;
2137 kmp_uint8 leaf_kids;
2138 kmp_uint8 offset;
2139 kmp_uint8 wait_flag;
2140 kmp_uint8 use_oncore_barrier;
2141#if USE_DEBUGGER
2142 // The following field is intended for the debugger solely. Only the worker
2143 // thread itself accesses this field: the worker increases it by 1 when it
2144 // arrives to a barrier.
2145 KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2146#endif /* USE_DEBUGGER */
2147} kmp_bstate_t;
2148
2149union KMP_ALIGN_CACHE kmp_barrier_union {
2150 double b_align; /* use worst case alignment */
2151 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2152 kmp_bstate_t bb;
2153};
2154
2155typedef union kmp_barrier_union kmp_balign_t;
2156
2157/* Team barrier needs only non-volatile arrived counter */
2158union KMP_ALIGN_CACHE kmp_barrier_team_union {
2159 double b_align; /* use worst case alignment */
2160 char b_pad[CACHE_LINE];
2161 struct {
2162 kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2163#if USE_DEBUGGER
2164 // The following two fields are indended for the debugger solely. Only
2165 // primary thread of the team accesses these fields: the first one is
2166 // increased by 1 when the primary thread arrives to a barrier, the second
2167 // one is increased by one when all the threads arrived.
2168 kmp_uint b_master_arrived;
2169 kmp_uint b_team_arrived;
2170#endif
2171 };
2172};
2173
2174typedef union kmp_barrier_team_union kmp_balign_team_t;
2175
2176/* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2177 threads when a condition changes. This is to workaround an NPTL bug where
2178 padding was added to pthread_cond_t which caused the initialization routine
2179 to write outside of the structure if compiled on pre-NPTL threads. */
2180#if KMP_OS_WINDOWS
2181typedef struct kmp_win32_mutex {
2182 /* The Lock */
2183 CRITICAL_SECTION cs;
2184} kmp_win32_mutex_t;
2185
2186typedef struct kmp_win32_cond {
2187 /* Count of the number of waiters. */
2188 int waiters_count_;
2189
2190 /* Serialize access to <waiters_count_> */
2191 kmp_win32_mutex_t waiters_count_lock_;
2192
2193 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2194 int release_count_;
2195
2196 /* Keeps track of the current "generation" so that we don't allow */
2197 /* one thread to steal all the "releases" from the broadcast. */
2198 int wait_generation_count_;
2199
2200 /* A manual-reset event that's used to block and release waiting threads. */
2201 HANDLE event_;
2202} kmp_win32_cond_t;
2203#endif
2204
2205#if KMP_OS_UNIX
2206
2207union KMP_ALIGN_CACHE kmp_cond_union {
2208 double c_align;
2209 char c_pad[CACHE_LINE];
2210 pthread_cond_t c_cond;
2211};
2212
2213typedef union kmp_cond_union kmp_cond_align_t;
2214
2215union KMP_ALIGN_CACHE kmp_mutex_union {
2216 double m_align;
2217 char m_pad[CACHE_LINE];
2218 pthread_mutex_t m_mutex;
2219};
2220
2221typedef union kmp_mutex_union kmp_mutex_align_t;
2222
2223#endif /* KMP_OS_UNIX */
2224
2225typedef struct kmp_desc_base {
2226 void *ds_stackbase;
2227 size_t ds_stacksize;
2228 int ds_stackgrow;
2229 kmp_thread_t ds_thread;
2230 volatile int ds_tid;
2231 int ds_gtid;
2232#if KMP_OS_WINDOWS
2233 volatile int ds_alive;
2234 DWORD ds_thread_id;
2235/* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2236 However, debugger support (libomp_db) cannot work with handles, because they
2237 uncomparable. For example, debugger requests info about thread with handle h.
2238 h is valid within debugger process, and meaningless within debugee process.
2239 Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2240 within debugee process, but it is a *new* handle which does *not* equal to
2241 any other handle in debugee... The only way to compare handles is convert
2242 them to system-wide ids. GetThreadId() function is available only in
2243 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2244 on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2245 thread id by call to GetCurrentThreadId() from within the thread and save it
2246 to let libomp_db identify threads. */
2247#endif /* KMP_OS_WINDOWS */
2248} kmp_desc_base_t;
2249
2250typedef union KMP_ALIGN_CACHE kmp_desc {
2251 double ds_align; /* use worst case alignment */
2252 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2253 kmp_desc_base_t ds;
2254} kmp_desc_t;
2255
2256typedef struct kmp_local {
2257 volatile int this_construct; /* count of single's encountered by thread */
2258 void *reduce_data;
2259#if KMP_USE_BGET
2260 void *bget_data;
2261 void *bget_list;
2262#if !USE_CMP_XCHG_FOR_BGET
2263#ifdef USE_QUEUING_LOCK_FOR_BGET
2264 kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2265#else
2266 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2267// bootstrap lock so we can use it at library
2268// shutdown.
2269#endif /* USE_LOCK_FOR_BGET */
2270#endif /* ! USE_CMP_XCHG_FOR_BGET */
2271#endif /* KMP_USE_BGET */
2272
2273 PACKED_REDUCTION_METHOD_T
2274 packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2275 __kmpc_end_reduce*() */
2276
2277} kmp_local_t;
2278
2279#define KMP_CHECK_UPDATE(a, b) \
2280 if ((a) != (b)) \
2281 (a) = (b)
2282#define KMP_CHECK_UPDATE_SYNC(a, b) \
2283 if ((a) != (b)) \
2284 TCW_SYNC_PTR((a), (b))
2285
2286#define get__blocktime(xteam, xtid) \
2287 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2288#define get__bt_set(xteam, xtid) \
2289 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2290#if KMP_USE_MONITOR
2291#define get__bt_intervals(xteam, xtid) \
2292 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2293#endif
2294
2295#define get__dynamic_2(xteam, xtid) \
2296 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2297#define get__nproc_2(xteam, xtid) \
2298 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2299#define get__sched_2(xteam, xtid) \
2300 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2301
2302#define set__blocktime_team(xteam, xtid, xval) \
2303 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2304 (xval))
2305
2306#if KMP_USE_MONITOR
2307#define set__bt_intervals_team(xteam, xtid, xval) \
2308 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2309 (xval))
2310#endif
2311
2312#define set__bt_set_team(xteam, xtid, xval) \
2313 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2314
2315#define set__dynamic(xthread, xval) \
2316 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2317#define get__dynamic(xthread) \
2318 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2319
2320#define set__nproc(xthread, xval) \
2321 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2322
2323#define set__thread_limit(xthread, xval) \
2324 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2325
2326#define set__max_active_levels(xthread, xval) \
2327 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2328
2329#define get__max_active_levels(xthread) \
2330 ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2331
2332#define set__sched(xthread, xval) \
2333 (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2334
2335#define set__proc_bind(xthread, xval) \
2336 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2337#define get__proc_bind(xthread) \
2338 ((xthread)->th.th_current_task->td_icvs.proc_bind)
2339
2340// OpenMP tasking data structures
2341
2342typedef enum kmp_tasking_mode {
2343 tskm_immediate_exec = 0,
2344 tskm_extra_barrier = 1,
2345 tskm_task_teams = 2,
2346 tskm_max = 2
2347} kmp_tasking_mode_t;
2348
2349extern kmp_tasking_mode_t
2350 __kmp_tasking_mode; /* determines how/when to execute tasks */
2351extern int __kmp_task_stealing_constraint;
2352extern int __kmp_enable_task_throttling;
2353extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2354// specified, defaults to 0 otherwise
2355// Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2356extern kmp_int32 __kmp_max_task_priority;
2357// Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2358extern kmp_uint64 __kmp_taskloop_min_tasks;
2359
2360/* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2361 taskdata first */
2362#define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2363#define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2364
2365// The tt_found_tasks flag is a signal to all threads in the team that tasks
2366// were spawned and queued since the previous barrier release.
2367#define KMP_TASKING_ENABLED(task_team) \
2368 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2376typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2377
2378typedef union kmp_cmplrdata {
2379 kmp_int32 priority;
2380 kmp_routine_entry_t
2381 destructors; /* pointer to function to invoke deconstructors of
2382 firstprivate C++ objects */
2383 /* future data */
2384} kmp_cmplrdata_t;
2385
2386/* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2389typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2390 void *shareds;
2391 kmp_routine_entry_t
2392 routine;
2393 kmp_int32 part_id;
2394 kmp_cmplrdata_t
2395 data1; /* Two known optional additions: destructors and priority */
2396 kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2397 /* future data */
2398 /* private vars */
2399} kmp_task_t;
2400
2405typedef struct kmp_taskgroup {
2406 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2407 std::atomic<kmp_int32>
2408 cancel_request; // request for cancellation of this taskgroup
2409 struct kmp_taskgroup *parent; // parent taskgroup
2410 // Block of data to perform task reduction
2411 void *reduce_data; // reduction related info
2412 kmp_int32 reduce_num_data; // number of data items to reduce
2413 uintptr_t *gomp_data; // gomp reduction data
2414} kmp_taskgroup_t;
2415
2416// forward declarations
2417typedef union kmp_depnode kmp_depnode_t;
2418typedef struct kmp_depnode_list kmp_depnode_list_t;
2419typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2420
2421// macros for checking dep flag as an integer
2422#define KMP_DEP_IN 0x1
2423#define KMP_DEP_OUT 0x2
2424#define KMP_DEP_INOUT 0x3
2425#define KMP_DEP_MTX 0x4
2426#define KMP_DEP_SET 0x8
2427#define KMP_DEP_ALL 0x80
2428// Compiler sends us this info:
2429typedef struct kmp_depend_info {
2430 kmp_intptr_t base_addr;
2431 size_t len;
2432 union {
2433 kmp_uint8 flag; // flag as an unsigned char
2434 struct { // flag as a set of 8 bits
2435 unsigned in : 1;
2436 unsigned out : 1;
2437 unsigned mtx : 1;
2438 unsigned set : 1;
2439 unsigned unused : 3;
2440 unsigned all : 1;
2441 } flags;
2442 };
2443} kmp_depend_info_t;
2444
2445// Internal structures to work with task dependencies:
2446struct kmp_depnode_list {
2447 kmp_depnode_t *node;
2448 kmp_depnode_list_t *next;
2449};
2450
2451// Max number of mutexinoutset dependencies per node
2452#define MAX_MTX_DEPS 4
2453
2454typedef struct kmp_base_depnode {
2455 kmp_depnode_list_t *successors; /* used under lock */
2456 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2457 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2458 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2459 kmp_lock_t lock; /* guards shared fields: task, successors */
2460#if KMP_SUPPORT_GRAPH_OUTPUT
2461 kmp_uint32 id;
2462#endif
2463 std::atomic<kmp_int32> npredecessors;
2464 std::atomic<kmp_int32> nrefs;
2465} kmp_base_depnode_t;
2466
2467union KMP_ALIGN_CACHE kmp_depnode {
2468 double dn_align; /* use worst case alignment */
2469 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2470 kmp_base_depnode_t dn;
2471};
2472
2473struct kmp_dephash_entry {
2474 kmp_intptr_t addr;
2475 kmp_depnode_t *last_out;
2476 kmp_depnode_list_t *last_set;
2477 kmp_depnode_list_t *prev_set;
2478 kmp_uint8 last_flag;
2479 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2480 kmp_dephash_entry_t *next_in_bucket;
2481};
2482
2483typedef struct kmp_dephash {
2484 kmp_dephash_entry_t **buckets;
2485 size_t size;
2486 kmp_depnode_t *last_all;
2487 size_t generation;
2488 kmp_uint32 nelements;
2489 kmp_uint32 nconflicts;
2490} kmp_dephash_t;
2491
2492typedef struct kmp_task_affinity_info {
2493 kmp_intptr_t base_addr;
2494 size_t len;
2495 struct {
2496 bool flag1 : 1;
2497 bool flag2 : 1;
2498 kmp_int32 reserved : 30;
2499 } flags;
2500} kmp_task_affinity_info_t;
2501
2502typedef enum kmp_event_type_t {
2503 KMP_EVENT_UNINITIALIZED = 0,
2504 KMP_EVENT_ALLOW_COMPLETION = 1
2505} kmp_event_type_t;
2506
2507typedef struct {
2508 kmp_event_type_t type;
2509 kmp_tas_lock_t lock;
2510 union {
2511 kmp_task_t *task;
2512 } ed;
2513} kmp_event_t;
2514
2515#if OMPX_TASKGRAPH
2516// Initial number of allocated nodes while recording
2517#define INIT_MAPSIZE 50
2518
2519typedef struct kmp_taskgraph_flags { /*This needs to be exactly 32 bits */
2520 unsigned nowait : 1;
2521 unsigned re_record : 1;
2522 unsigned reserved : 30;
2523} kmp_taskgraph_flags_t;
2524
2526typedef struct kmp_node_info {
2527 kmp_task_t *task; // Pointer to the actual task
2528 kmp_int32 *successors; // Array of the succesors ids
2529 kmp_int32 nsuccessors; // Number of succesors of the node
2530 std::atomic<kmp_int32>
2531 npredecessors_counter; // Number of predessors on the fly
2532 kmp_int32 npredecessors; // Total number of predecessors
2533 kmp_int32 successors_size; // Number of allocated succesors ids
2534 kmp_taskdata_t *parent_task; // Parent implicit task
2535} kmp_node_info_t;
2536
2538typedef enum kmp_tdg_status {
2539 KMP_TDG_NONE = 0,
2540 KMP_TDG_RECORDING = 1,
2541 KMP_TDG_READY = 2
2542} kmp_tdg_status_t;
2543
2545typedef struct kmp_tdg_info {
2546 kmp_int32 tdg_id; // Unique idenfifier of the TDG
2547 kmp_taskgraph_flags_t tdg_flags; // Flags related to a TDG
2548 kmp_int32 map_size; // Number of allocated TDG nodes
2549 kmp_int32 num_roots; // Number of roots tasks int the TDG
2550 kmp_int32 *root_tasks; // Array of tasks identifiers that are roots
2551 kmp_node_info_t *record_map; // Array of TDG nodes
2552 kmp_tdg_status_t tdg_status =
2553 KMP_TDG_NONE; // Status of the TDG (recording, ready...)
2554 std::atomic<kmp_int32> num_tasks; // Number of TDG nodes
2555 kmp_bootstrap_lock_t
2556 graph_lock; // Protect graph attributes when updated via taskloop_recur
2557 // Taskloop reduction related
2558 void *rec_taskred_data; // Data to pass to __kmpc_task_reduction_init or
2559 // __kmpc_taskred_init
2560 kmp_int32 rec_num_taskred;
2561} kmp_tdg_info_t;
2562
2563extern int __kmp_tdg_dot;
2564extern kmp_int32 __kmp_max_tdgs;
2565extern kmp_tdg_info_t **__kmp_global_tdgs;
2566extern kmp_int32 __kmp_curr_tdg_idx;
2567extern kmp_int32 __kmp_successors_size;
2568extern std::atomic<kmp_int32> __kmp_tdg_task_id;
2569extern kmp_int32 __kmp_num_tdg;
2570#endif
2571
2572#ifdef BUILD_TIED_TASK_STACK
2573
2574/* Tied Task stack definitions */
2575typedef struct kmp_stack_block {
2576 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2577 struct kmp_stack_block *sb_next;
2578 struct kmp_stack_block *sb_prev;
2579} kmp_stack_block_t;
2580
2581typedef struct kmp_task_stack {
2582 kmp_stack_block_t ts_first_block; // first block of stack entries
2583 kmp_taskdata_t **ts_top; // pointer to the top of stack
2584 kmp_int32 ts_entries; // number of entries on the stack
2585} kmp_task_stack_t;
2586
2587#endif // BUILD_TIED_TASK_STACK
2588
2589typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2590 /* Compiler flags */ /* Total compiler flags must be 16 bits */
2591 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2592 unsigned final : 1; /* task is final(1) so execute immediately */
2593 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2594 code path */
2595 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2596 invoke destructors from the runtime */
2597 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2598 context of the RTL) */
2599 unsigned priority_specified : 1; /* set if the compiler provides priority
2600 setting for the task */
2601 unsigned detachable : 1; /* 1 == can detach */
2602 unsigned hidden_helper : 1; /* 1 == hidden helper task */
2603 unsigned reserved : 8; /* reserved for compiler use */
2604
2605 /* Library flags */ /* Total library flags must be 16 bits */
2606 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2607 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2608 unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2609 // (1) or may be deferred (0)
2610 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2611 // (0) [>= 2 threads]
2612 /* If either team_serial or tasking_ser is set, task team may be NULL */
2613 /* Task State Flags: */
2614 unsigned started : 1; /* 1==started, 0==not started */
2615 unsigned executing : 1; /* 1==executing, 0==not executing */
2616 unsigned complete : 1; /* 1==complete, 0==not complete */
2617 unsigned freed : 1; /* 1==freed, 0==allocated */
2618 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2619#if OMPX_TASKGRAPH
2620 unsigned onced : 1; /* 1==ran once already, 0==never ran, record & replay purposes */
2621 unsigned reserved31 : 6; /* reserved for library use */
2622#else
2623 unsigned reserved31 : 7; /* reserved for library use */
2624#endif
2625
2626} kmp_tasking_flags_t;
2627
2628typedef struct kmp_target_data {
2629 void *async_handle; // libomptarget async handle for task completion query
2630} kmp_target_data_t;
2631
2632struct kmp_taskdata { /* aligned during dynamic allocation */
2633 kmp_int32 td_task_id; /* id, assigned by debugger */
2634 kmp_tasking_flags_t td_flags; /* task flags */
2635 kmp_team_t *td_team; /* team for this task */
2636 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2637 /* Currently not used except for perhaps IDB */
2638 kmp_taskdata_t *td_parent; /* parent task */
2639 kmp_int32 td_level; /* task nesting level */
2640 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2641 ident_t *td_ident; /* task identifier */
2642 // Taskwait data.
2643 ident_t *td_taskwait_ident;
2644 kmp_uint32 td_taskwait_counter;
2645 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2646 KMP_ALIGN_CACHE kmp_internal_control_t
2647 td_icvs; /* Internal control variables for the task */
2648 KMP_ALIGN_CACHE std::atomic<kmp_int32>
2649 td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2650 deallocated */
2651 std::atomic<kmp_int32>
2652 td_incomplete_child_tasks; /* Child tasks not yet complete */
2653 kmp_taskgroup_t
2654 *td_taskgroup; // Each task keeps pointer to its current taskgroup
2655 kmp_dephash_t
2656 *td_dephash; // Dependencies for children tasks are tracked from here
2657 kmp_depnode_t
2658 *td_depnode; // Pointer to graph node if this task has dependencies
2659 kmp_task_team_t *td_task_team;
2660 size_t td_size_alloc; // Size of task structure, including shareds etc.
2661#if defined(KMP_GOMP_COMPAT)
2662 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2663 kmp_int32 td_size_loop_bounds;
2664#endif
2665 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2666#if defined(KMP_GOMP_COMPAT)
2667 // GOMP sends in a copy function for copy constructors
2668 void (*td_copy_func)(void *, void *);
2669#endif
2670 kmp_event_t td_allow_completion_event;
2671#if OMPT_SUPPORT
2672 ompt_task_info_t ompt_task_info;
2673#endif
2674#if OMPX_TASKGRAPH
2675 bool is_taskgraph = 0; // whether the task is within a TDG
2676 kmp_tdg_info_t *tdg; // used to associate task with a TDG
2677#endif
2678 kmp_target_data_t td_target_data;
2679}; // struct kmp_taskdata
2680
2681// Make sure padding above worked
2682KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2683
2684// Data for task team but per thread
2685typedef struct kmp_base_thread_data {
2686 kmp_info_p *td_thr; // Pointer back to thread info
2687 // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2688 // queued?
2689 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2690 kmp_taskdata_t *
2691 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2692 kmp_int32 td_deque_size; // Size of deck
2693 kmp_uint32 td_deque_head; // Head of deque (will wrap)
2694 kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2695 kmp_int32 td_deque_ntasks; // Number of tasks in deque
2696 // GEH: shouldn't this be volatile since used in while-spin?
2697 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2698#ifdef BUILD_TIED_TASK_STACK
2699 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2700// scheduling constraint
2701#endif // BUILD_TIED_TASK_STACK
2702} kmp_base_thread_data_t;
2703
2704#define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2705#define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2706
2707#define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2708#define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2709
2710typedef union KMP_ALIGN_CACHE kmp_thread_data {
2711 kmp_base_thread_data_t td;
2712 double td_align; /* use worst case alignment */
2713 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2714} kmp_thread_data_t;
2715
2716typedef struct kmp_task_pri {
2717 kmp_thread_data_t td;
2718 kmp_int32 priority;
2719 kmp_task_pri *next;
2720} kmp_task_pri_t;
2721
2722// Data for task teams which are used when tasking is enabled for the team
2723typedef struct kmp_base_task_team {
2724 kmp_bootstrap_lock_t
2725 tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2726 /* must be bootstrap lock since used at library shutdown*/
2727
2728 // TODO: check performance vs kmp_tas_lock_t
2729 kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2730 kmp_task_pri_t *tt_task_pri_list;
2731
2732 kmp_task_team_t *tt_next; /* For linking the task team free list */
2733 kmp_thread_data_t
2734 *tt_threads_data; /* Array of per-thread structures for task team */
2735 /* Data survives task team deallocation */
2736 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2737 executing this team? */
2738 /* TRUE means tt_threads_data is set up and initialized */
2739 kmp_int32 tt_nproc; /* #threads in team */
2740 kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2741 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2742 kmp_int32 tt_untied_task_encountered;
2743 std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2744 // There is hidden helper thread encountered in this task team so that we must
2745 // wait when waiting on task team
2746 kmp_int32 tt_hidden_helper_task_encountered;
2747
2748 KMP_ALIGN_CACHE
2749 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2750
2751 KMP_ALIGN_CACHE
2752 volatile kmp_uint32
2753 tt_active; /* is the team still actively executing tasks */
2754} kmp_base_task_team_t;
2755
2756union KMP_ALIGN_CACHE kmp_task_team {
2757 kmp_base_task_team_t tt;
2758 double tt_align; /* use worst case alignment */
2759 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2760};
2761
2762#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2763// Free lists keep same-size free memory slots for fast memory allocation
2764// routines
2765typedef struct kmp_free_list {
2766 void *th_free_list_self; // Self-allocated tasks free list
2767 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2768 // threads
2769 void *th_free_list_other; // Non-self free list (to be returned to owner's
2770 // sync list)
2771} kmp_free_list_t;
2772#endif
2773#if KMP_NESTED_HOT_TEAMS
2774// Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2775// are not put in teams pool, and they don't put threads in threads pool.
2776typedef struct kmp_hot_team_ptr {
2777 kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2778 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2779} kmp_hot_team_ptr_t;
2780#endif
2781typedef struct kmp_teams_size {
2782 kmp_int32 nteams; // number of teams in a league
2783 kmp_int32 nth; // number of threads in each team of the league
2784} kmp_teams_size_t;
2785
2786// This struct stores a thread that acts as a "root" for a contention
2787// group. Contention groups are rooted at kmp_root threads, but also at
2788// each primary thread of each team created in the teams construct.
2789// This struct therefore also stores a thread_limit associated with
2790// that contention group, and a counter to track the number of threads
2791// active in that contention group. Each thread has a list of these: CG
2792// root threads have an entry in their list in which cg_root refers to
2793// the thread itself, whereas other workers in the CG will have a
2794// single entry where cg_root is same as the entry containing their CG
2795// root. When a thread encounters a teams construct, it will add a new
2796// entry to the front of its list, because it now roots a new CG.
2797typedef struct kmp_cg_root {
2798 kmp_info_p *cg_root; // "root" thread for a contention group
2799 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2800 // thread_limit clause for teams primary threads
2801 kmp_int32 cg_thread_limit;
2802 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2803 struct kmp_cg_root *up; // pointer to higher level CG root in list
2804} kmp_cg_root_t;
2805
2806// OpenMP thread data structures
2807
2808typedef struct KMP_ALIGN_CACHE kmp_base_info {
2809 /* Start with the readonly data which is cache aligned and padded. This is
2810 written before the thread starts working by the primary thread. Uber
2811 masters may update themselves later. Usage does not consider serialized
2812 regions. */
2813 kmp_desc_t th_info;
2814 kmp_team_p *th_team; /* team we belong to */
2815 kmp_root_p *th_root; /* pointer to root of task hierarchy */
2816 kmp_info_p *th_next_pool; /* next available thread in the pool */
2817 kmp_disp_t *th_dispatch; /* thread's dispatch data */
2818 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2819
2820 /* The following are cached from the team info structure */
2821 /* TODO use these in more places as determined to be needed via profiling */
2822 int th_team_nproc; /* number of threads in a team */
2823 kmp_info_p *th_team_master; /* the team's primary thread */
2824 int th_team_serialized; /* team is serialized */
2825 microtask_t th_teams_microtask; /* save entry address for teams construct */
2826 int th_teams_level; /* save initial level of teams construct */
2827/* it is 0 on device but may be any on host */
2828
2829/* The blocktime info is copied from the team struct to the thread struct */
2830/* at the start of a barrier, and the values stored in the team are used */
2831/* at points in the code where the team struct is no longer guaranteed */
2832/* to exist (from the POV of worker threads). */
2833#if KMP_USE_MONITOR
2834 int th_team_bt_intervals;
2835 int th_team_bt_set;
2836#else
2837 kmp_uint64 th_team_bt_intervals;
2838#endif
2839
2840#if KMP_AFFINITY_SUPPORTED
2841 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2842 kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */
2843 kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */
2844#endif
2845 omp_allocator_handle_t th_def_allocator; /* default allocator */
2846 /* The data set by the primary thread at reinit, then R/W by the worker */
2847 KMP_ALIGN_CACHE int
2848 th_set_nproc; /* if > 0, then only use this request for the next fork */
2849#if KMP_NESTED_HOT_TEAMS
2850 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2851#endif
2852 kmp_proc_bind_t
2853 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2854 kmp_teams_size_t
2855 th_teams_size; /* number of teams/threads in teams construct */
2856#if KMP_AFFINITY_SUPPORTED
2857 int th_current_place; /* place currently bound to */
2858 int th_new_place; /* place to bind to in par reg */
2859 int th_first_place; /* first place in partition */
2860 int th_last_place; /* last place in partition */
2861#endif
2862 int th_prev_level; /* previous level for affinity format */
2863 int th_prev_num_threads; /* previous num_threads for affinity format */
2864#if USE_ITT_BUILD
2865 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2866 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2867 kmp_uint64 th_frame_time; /* frame timestamp */
2868#endif /* USE_ITT_BUILD */
2869 kmp_local_t th_local;
2870 struct private_common *th_pri_head;
2871
2872 /* Now the data only used by the worker (after initial allocation) */
2873 /* TODO the first serial team should actually be stored in the info_t
2874 structure. this will help reduce initial allocation overhead */
2875 KMP_ALIGN_CACHE kmp_team_p
2876 *th_serial_team; /*serialized team held in reserve*/
2877
2878#if OMPT_SUPPORT
2879 ompt_thread_info_t ompt_thread_info;
2880#endif
2881
2882 /* The following are also read by the primary thread during reinit */
2883 struct common_table *th_pri_common;
2884
2885 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2886 /* while awaiting queuing lock acquire */
2887
2888 volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2889 flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
2890
2891 ident_t *th_ident;
2892 unsigned th_x; // Random number generator data
2893 unsigned th_a; // Random number generator data
2894
2895 /* Tasking-related data for the thread */
2896 kmp_task_team_t *th_task_team; // Task team struct
2897 kmp_taskdata_t *th_current_task; // Innermost Task being executed
2898 kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2899 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2900 // at nested levels
2901 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2902 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2903 kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2904 // tasking, thus safe to reap
2905
2906 /* More stuff for keeping track of active/sleeping threads (this part is
2907 written by the worker thread) */
2908 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2909 int th_active; // ! sleeping; 32 bits for TCR/TCW
2910 std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
2911 // 0 = not used in team; 1 = used in team;
2912 // 2 = transitioning to not used in team; 3 = transitioning to used in team
2913 struct cons_header *th_cons; // used for consistency check
2914#if KMP_USE_HIER_SCHED
2915 // used for hierarchical scheduling
2916 kmp_hier_private_bdata_t *th_hier_bar_data;
2917#endif
2918
2919 /* Add the syncronizing data which is cache aligned and padded. */
2920 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2921
2922 KMP_ALIGN_CACHE volatile kmp_int32
2923 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2924
2925#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2926#define NUM_LISTS 4
2927 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2928// allocation routines
2929#endif
2930
2931#if KMP_OS_WINDOWS
2932 kmp_win32_cond_t th_suspend_cv;
2933 kmp_win32_mutex_t th_suspend_mx;
2934 std::atomic<int> th_suspend_init;
2935#endif
2936#if KMP_OS_UNIX
2937 kmp_cond_align_t th_suspend_cv;
2938 kmp_mutex_align_t th_suspend_mx;
2939 std::atomic<int> th_suspend_init_count;
2940#endif
2941
2942#if USE_ITT_BUILD
2943 kmp_itt_mark_t th_itt_mark_single;
2944// alignment ???
2945#endif /* USE_ITT_BUILD */
2946#if KMP_STATS_ENABLED
2947 kmp_stats_list *th_stats;
2948#endif
2949#if KMP_OS_UNIX
2950 std::atomic<bool> th_blocking;
2951#endif
2952 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2953} kmp_base_info_t;
2954
2955typedef union KMP_ALIGN_CACHE kmp_info {
2956 double th_align; /* use worst case alignment */
2957 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2958 kmp_base_info_t th;
2959} kmp_info_t;
2960
2961// OpenMP thread team data structures
2962
2963typedef struct kmp_base_data {
2964 volatile kmp_uint32 t_value;
2965} kmp_base_data_t;
2966
2967typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2968 double dt_align; /* use worst case alignment */
2969 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2970 kmp_base_data_t dt;
2971} kmp_sleep_team_t;
2972
2973typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2974 double dt_align; /* use worst case alignment */
2975 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2976 kmp_base_data_t dt;
2977} kmp_ordered_team_t;
2978
2979typedef int (*launch_t)(int gtid);
2980
2981/* Minimum number of ARGV entries to malloc if necessary */
2982#define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2983
2984// Set up how many argv pointers will fit in cache lines containing
2985// t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2986// larger value for more space between the primary write/worker read section and
2987// read/write by all section seems to buy more performance on EPCC PARALLEL.
2988#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2989#define KMP_INLINE_ARGV_BYTES \
2990 (4 * CACHE_LINE - \
2991 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
2992 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
2993 CACHE_LINE))
2994#else
2995#define KMP_INLINE_ARGV_BYTES \
2996 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2997#endif
2998#define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2999
3000typedef struct KMP_ALIGN_CACHE kmp_base_team {
3001 // Synchronization Data
3002 // ---------------------------------------------------------------------------
3003 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
3004 kmp_balign_team_t t_bar[bs_last_barrier];
3005 std::atomic<int> t_construct; // count of single directive encountered by team
3006 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
3007
3008 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
3009 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
3010 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
3011
3012 // Primary thread only
3013 // ---------------------------------------------------------------------------
3014 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
3015 int t_master_this_cons; // "this_construct" single counter of primary thread
3016 // in parent team
3017 ident_t *t_ident; // if volatile, have to change too much other crud to
3018 // volatile too
3019 kmp_team_p *t_parent; // parent team
3020 kmp_team_p *t_next_pool; // next free team in the team pool
3021 kmp_disp_t *t_dispatch; // thread's dispatch data
3022 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
3023 kmp_proc_bind_t t_proc_bind; // bind type for par region
3024#if USE_ITT_BUILD
3025 kmp_uint64 t_region_time; // region begin timestamp
3026#endif /* USE_ITT_BUILD */
3027
3028 // Primary thread write, workers read
3029 // --------------------------------------------------------------------------
3030 KMP_ALIGN_CACHE void **t_argv;
3031 int t_argc;
3032 int t_nproc; // number of threads in team
3033 microtask_t t_pkfn;
3034 launch_t t_invoke; // procedure to launch the microtask
3035
3036#if OMPT_SUPPORT
3037 ompt_team_info_t ompt_team_info;
3038 ompt_lw_taskteam_t *ompt_serialized_team_info;
3039#endif
3040
3041#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3042 kmp_int8 t_fp_control_saved;
3043 kmp_int8 t_pad2b;
3044 kmp_int16 t_x87_fpu_control_word; // FP control regs
3045 kmp_uint32 t_mxcsr;
3046#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3047
3048 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
3049
3050 KMP_ALIGN_CACHE kmp_info_t **t_threads;
3051 kmp_taskdata_t
3052 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
3053 int t_level; // nested parallel level
3054
3055 KMP_ALIGN_CACHE int t_max_argc;
3056 int t_max_nproc; // max threads this team can handle (dynamically expandable)
3057 int t_serialized; // levels deep of serialized teams
3058 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
3059 int t_id; // team's id, assigned by debugger.
3060 int t_active_level; // nested active parallel level
3061 kmp_r_sched_t t_sched; // run-time schedule for the team
3062#if KMP_AFFINITY_SUPPORTED
3063 int t_first_place; // first & last place in parent thread's partition.
3064 int t_last_place; // Restore these values to primary thread after par region.
3065#endif // KMP_AFFINITY_SUPPORTED
3066 int t_display_affinity;
3067 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
3068 // omp_set_num_threads() call
3069 omp_allocator_handle_t t_def_allocator; /* default allocator */
3070
3071// Read/write by workers as well
3072#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
3073 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
3074 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
3075 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
3076 // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
3077 char dummy_padding[1024];
3078#endif
3079 // Internal control stack for additional nested teams.
3080 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
3081 // for SERIALIZED teams nested 2 or more levels deep
3082 // typed flag to store request state of cancellation
3083 std::atomic<kmp_int32> t_cancel_request;
3084 int t_master_active; // save on fork, restore on join
3085 void *t_copypriv_data; // team specific pointer to copyprivate data array
3086#if KMP_OS_WINDOWS
3087 std::atomic<kmp_uint32> t_copyin_counter;
3088#endif
3089#if USE_ITT_BUILD
3090 void *t_stack_id; // team specific stack stitching id (for ittnotify)
3091#endif /* USE_ITT_BUILD */
3092 distributedBarrier *b; // Distributed barrier data associated with team
3093} kmp_base_team_t;
3094
3095union KMP_ALIGN_CACHE kmp_team {
3096 kmp_base_team_t t;
3097 double t_align; /* use worst case alignment */
3098 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
3099};
3100
3101typedef union KMP_ALIGN_CACHE kmp_time_global {
3102 double dt_align; /* use worst case alignment */
3103 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3104 kmp_base_data_t dt;
3105} kmp_time_global_t;
3106
3107typedef struct kmp_base_global {
3108 /* cache-aligned */
3109 kmp_time_global_t g_time;
3110
3111 /* non cache-aligned */
3112 volatile int g_abort;
3113 volatile int g_done;
3114
3115 int g_dynamic;
3116 enum dynamic_mode g_dynamic_mode;
3117} kmp_base_global_t;
3118
3119typedef union KMP_ALIGN_CACHE kmp_global {
3120 kmp_base_global_t g;
3121 double g_align; /* use worst case alignment */
3122 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
3123} kmp_global_t;
3124
3125typedef struct kmp_base_root {
3126 // TODO: GEH - combine r_active with r_in_parallel then r_active ==
3127 // (r_in_parallel>= 0)
3128 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
3129 // the synch overhead or keeping r_active
3130 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
3131 // keeps a count of active parallel regions per root
3132 std::atomic<int> r_in_parallel;
3133 // GEH: This is misnamed, should be r_active_levels
3134 kmp_team_t *r_root_team;
3135 kmp_team_t *r_hot_team;
3136 kmp_info_t *r_uber_thread;
3137 kmp_lock_t r_begin_lock;
3138 volatile int r_begin;
3139 int r_blocktime; /* blocktime for this root and descendants */
3140#if KMP_AFFINITY_SUPPORTED
3141 int r_affinity_assigned;
3142#endif // KMP_AFFINITY_SUPPORTED
3143} kmp_base_root_t;
3144
3145typedef union KMP_ALIGN_CACHE kmp_root {
3146 kmp_base_root_t r;
3147 double r_align; /* use worst case alignment */
3148 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
3149} kmp_root_t;
3150
3151struct fortran_inx_info {
3152 kmp_int32 data;
3153};
3154
3155// This list type exists to hold old __kmp_threads arrays so that
3156// old references to them may complete while reallocation takes place when
3157// expanding the array. The items in this list are kept alive until library
3158// shutdown.
3159typedef struct kmp_old_threads_list_t {
3160 kmp_info_t **threads;
3161 struct kmp_old_threads_list_t *next;
3162} kmp_old_threads_list_t;
3163
3164/* ------------------------------------------------------------------------ */
3165
3166extern int __kmp_settings;
3167extern int __kmp_duplicate_library_ok;
3168#if USE_ITT_BUILD
3169extern int __kmp_forkjoin_frames;
3170extern int __kmp_forkjoin_frames_mode;
3171#endif
3172extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3173extern int __kmp_determ_red;
3174
3175#ifdef KMP_DEBUG
3176extern int kmp_a_debug;
3177extern int kmp_b_debug;
3178extern int kmp_c_debug;
3179extern int kmp_d_debug;
3180extern int kmp_e_debug;
3181extern int kmp_f_debug;
3182#endif /* KMP_DEBUG */
3183
3184/* For debug information logging using rotating buffer */
3185#define KMP_DEBUG_BUF_LINES_INIT 512
3186#define KMP_DEBUG_BUF_LINES_MIN 1
3187
3188#define KMP_DEBUG_BUF_CHARS_INIT 128
3189#define KMP_DEBUG_BUF_CHARS_MIN 2
3190
3191extern int
3192 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3193extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3194extern int
3195 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3196extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3197 entry pointer */
3198
3199extern char *__kmp_debug_buffer; /* Debug buffer itself */
3200extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3201 printed in buffer so far */
3202extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3203 recommended in warnings */
3204/* end rotating debug buffer */
3205
3206#ifdef KMP_DEBUG
3207extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3208
3209#define KMP_PAR_RANGE_ROUTINE_LEN 1024
3210extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3211#define KMP_PAR_RANGE_FILENAME_LEN 1024
3212extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3213extern int __kmp_par_range_lb;
3214extern int __kmp_par_range_ub;
3215#endif
3216
3217/* For printing out dynamic storage map for threads and teams */
3218extern int
3219 __kmp_storage_map; /* True means print storage map for threads and teams */
3220extern int __kmp_storage_map_verbose; /* True means storage map includes
3221 placement info */
3222extern int __kmp_storage_map_verbose_specified;
3223
3224#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3225extern kmp_cpuinfo_t __kmp_cpuinfo;
3226static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3227#elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
3228static inline bool __kmp_is_hybrid_cpu() { return true; }
3229#else
3230static inline bool __kmp_is_hybrid_cpu() { return false; }
3231#endif
3232
3233extern volatile int __kmp_init_serial;
3234extern volatile int __kmp_init_gtid;
3235extern volatile int __kmp_init_common;
3236extern volatile int __kmp_need_register_serial;
3237extern volatile int __kmp_init_middle;
3238extern volatile int __kmp_init_parallel;
3239#if KMP_USE_MONITOR
3240extern volatile int __kmp_init_monitor;
3241#endif
3242extern volatile int __kmp_init_user_locks;
3243extern volatile int __kmp_init_hidden_helper_threads;
3244extern int __kmp_init_counter;
3245extern int __kmp_root_counter;
3246extern int __kmp_version;
3247
3248/* list of address of allocated caches for commons */
3249extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3250
3251/* Barrier algorithm types and options */
3252extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3253extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3254extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3255extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3256extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3257extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3258extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3259extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3260extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3261extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3262extern char const *__kmp_barrier_type_name[bs_last_barrier];
3263extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3264
3265/* Global Locks */
3266extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3267extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3268extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3269extern kmp_bootstrap_lock_t
3270 __kmp_exit_lock; /* exit() is not always thread-safe */
3271#if KMP_USE_MONITOR
3272extern kmp_bootstrap_lock_t
3273 __kmp_monitor_lock; /* control monitor thread creation */
3274#endif
3275extern kmp_bootstrap_lock_t
3276 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3277 __kmp_threads expansion to co-exist */
3278
3279extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3280extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3281extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3282
3283extern enum library_type __kmp_library;
3284
3285extern enum sched_type __kmp_sched; /* default runtime scheduling */
3286extern enum sched_type __kmp_static; /* default static scheduling method */
3287extern enum sched_type __kmp_guided; /* default guided scheduling method */
3288extern enum sched_type __kmp_auto; /* default auto scheduling method */
3289extern int __kmp_chunk; /* default runtime chunk size */
3290extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3291
3292extern size_t __kmp_stksize; /* stack size per thread */
3293#if KMP_USE_MONITOR
3294extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3295#endif
3296extern size_t __kmp_stkoffset; /* stack offset per thread */
3297extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3298
3299extern size_t
3300 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3301extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3302extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3303extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3304extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3305extern int __kmp_generate_warnings; /* should we issue warnings? */
3306extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3307
3308#ifdef DEBUG_SUSPEND
3309extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3310#endif
3311
3312extern kmp_int32 __kmp_use_yield;
3313extern kmp_int32 __kmp_use_yield_exp_set;
3314extern kmp_uint32 __kmp_yield_init;
3315extern kmp_uint32 __kmp_yield_next;
3316extern kmp_uint64 __kmp_pause_init;
3317
3318/* ------------------------------------------------------------------------- */
3319extern int __kmp_allThreadsSpecified;
3320
3321extern size_t __kmp_align_alloc;
3322/* following data protected by initialization routines */
3323extern int __kmp_xproc; /* number of processors in the system */
3324extern int __kmp_avail_proc; /* number of processors available to the process */
3325extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3326extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3327// maximum total number of concurrently-existing threads on device
3328extern int __kmp_max_nth;
3329// maximum total number of concurrently-existing threads in a contention group
3330extern int __kmp_cg_max_nth;
3331extern int __kmp_teams_max_nth; // max threads used in a teams construct
3332extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3333 __kmp_root */
3334extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3335 region a la OMP_NUM_THREADS */
3336extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3337 initialization */
3338extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3339 used (fixed) */
3340extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3341 (__kmpc_threadprivate_cached()) */
3342extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3343 blocking (env setting) */
3344extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3345#if KMP_USE_MONITOR
3346extern int
3347 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3348extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3349 blocking */
3350#endif
3351#ifdef KMP_ADJUST_BLOCKTIME
3352extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3353#endif /* KMP_ADJUST_BLOCKTIME */
3354#ifdef KMP_DFLT_NTH_CORES
3355extern int __kmp_ncores; /* Total number of cores for threads placement */
3356#endif
3357/* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3358extern int __kmp_abort_delay;
3359
3360extern int __kmp_need_register_atfork_specified;
3361extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3362 to install fork handler */
3363extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3364 0 - not set, will be set at runtime
3365 1 - using stack search
3366 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3367 X*) or TlsGetValue(Windows* OS))
3368 3 - static TLS (__declspec(thread) __kmp_gtid),
3369 Linux* OS .so only. */
3370extern int
3371 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3372#ifdef KMP_TDATA_GTID
3373extern KMP_THREAD_LOCAL int __kmp_gtid;
3374#endif
3375extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3376extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3377#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3378extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3379extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3380extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3381#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3382
3383// max_active_levels for nested parallelism enabled by default via
3384// OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3385extern int __kmp_dflt_max_active_levels;
3386// Indicates whether value of __kmp_dflt_max_active_levels was already
3387// explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3388extern bool __kmp_dflt_max_active_levels_set;
3389extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3390 concurrent execution per team */
3391#if KMP_NESTED_HOT_TEAMS
3392extern int __kmp_hot_teams_mode;
3393extern int __kmp_hot_teams_max_level;
3394#endif
3395
3396#if KMP_OS_LINUX
3397extern enum clock_function_type __kmp_clock_function;
3398extern int __kmp_clock_function_param;
3399#endif /* KMP_OS_LINUX */
3400
3401#if KMP_MIC_SUPPORTED
3402extern enum mic_type __kmp_mic_type;
3403#endif
3404
3405#ifdef USE_LOAD_BALANCE
3406extern double __kmp_load_balance_interval; // load balance algorithm interval
3407#endif /* USE_LOAD_BALANCE */
3408
3409// OpenMP 3.1 - Nested num threads array
3410typedef struct kmp_nested_nthreads_t {
3411 int *nth;
3412 int size;
3413 int used;
3414} kmp_nested_nthreads_t;
3415
3416extern kmp_nested_nthreads_t __kmp_nested_nth;
3417
3418#if KMP_USE_ADAPTIVE_LOCKS
3419
3420// Parameters for the speculative lock backoff system.
3421struct kmp_adaptive_backoff_params_t {
3422 // Number of soft retries before it counts as a hard retry.
3423 kmp_uint32 max_soft_retries;
3424 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3425 // the right
3426 kmp_uint32 max_badness;
3427};
3428
3429extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3430
3431#if KMP_DEBUG_ADAPTIVE_LOCKS
3432extern const char *__kmp_speculative_statsfile;
3433#endif
3434
3435#endif // KMP_USE_ADAPTIVE_LOCKS
3436
3437extern int __kmp_display_env; /* TRUE or FALSE */
3438extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3439extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3440extern int __kmp_nteams;
3441extern int __kmp_teams_thread_limit;
3442
3443/* ------------------------------------------------------------------------- */
3444
3445/* the following are protected by the fork/join lock */
3446/* write: lock read: anytime */
3447extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3448/* Holds old arrays of __kmp_threads until library shutdown */
3449extern kmp_old_threads_list_t *__kmp_old_threads_list;
3450/* read/write: lock */
3451extern volatile kmp_team_t *__kmp_team_pool;
3452extern volatile kmp_info_t *__kmp_thread_pool;
3453extern kmp_info_t *__kmp_thread_pool_insert_pt;
3454
3455// total num threads reachable from some root thread including all root threads
3456extern volatile int __kmp_nth;
3457/* total number of threads reachable from some root thread including all root
3458 threads, and those in the thread pool */
3459extern volatile int __kmp_all_nth;
3460extern std::atomic<int> __kmp_thread_pool_active_nth;
3461
3462extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3463/* end data protected by fork/join lock */
3464/* ------------------------------------------------------------------------- */
3465
3466#define __kmp_get_gtid() __kmp_get_global_thread_id()
3467#define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3468#define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3469#define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3470#define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3471
3472// AT: Which way is correct?
3473// AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3474// AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3475#define __kmp_get_team_num_threads(gtid) \
3476 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3477
3478static inline bool KMP_UBER_GTID(int gtid) {
3479 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3480 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3481 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3482 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3483}
3484
3485static inline int __kmp_tid_from_gtid(int gtid) {
3486 KMP_DEBUG_ASSERT(gtid >= 0);
3487 return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3488}
3489
3490static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3491 KMP_DEBUG_ASSERT(tid >= 0 && team);
3492 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3493}
3494
3495static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3496 KMP_DEBUG_ASSERT(thr);
3497 return thr->th.th_info.ds.ds_gtid;
3498}
3499
3500static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3501 KMP_DEBUG_ASSERT(gtid >= 0);
3502 return __kmp_threads[gtid];
3503}
3504
3505static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3506 KMP_DEBUG_ASSERT(gtid >= 0);
3507 return __kmp_threads[gtid]->th.th_team;
3508}
3509
3510static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3511 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3512 KMP_FATAL(ThreadIdentInvalid);
3513}
3514
3515#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3516extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3517extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3518extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3519extern int __kmp_mwait_hints; // Hints to pass in to mwait
3520#endif
3521
3522#if KMP_HAVE_UMWAIT
3523extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3524extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3525extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3526extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3527#endif
3528
3529/* ------------------------------------------------------------------------- */
3530
3531extern kmp_global_t __kmp_global; /* global status */
3532
3533extern kmp_info_t __kmp_monitor;
3534// For Debugging Support Library
3535extern std::atomic<kmp_int32> __kmp_team_counter;
3536// For Debugging Support Library
3537extern std::atomic<kmp_int32> __kmp_task_counter;
3538
3539#if USE_DEBUGGER
3540#define _KMP_GEN_ID(counter) \
3541 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3542#else
3543#define _KMP_GEN_ID(counter) (~0)
3544#endif /* USE_DEBUGGER */
3545
3546#define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3547#define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3548
3549/* ------------------------------------------------------------------------ */
3550
3551extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3552 size_t size, char const *format, ...);
3553
3554extern void __kmp_serial_initialize(void);
3555extern void __kmp_middle_initialize(void);
3556extern void __kmp_parallel_initialize(void);
3557
3558extern void __kmp_internal_begin(void);
3559extern void __kmp_internal_end_library(int gtid);
3560extern void __kmp_internal_end_thread(int gtid);
3561extern void __kmp_internal_end_atexit(void);
3562extern void __kmp_internal_end_dtor(void);
3563extern void __kmp_internal_end_dest(void *);
3564
3565extern int __kmp_register_root(int initial_thread);
3566extern void __kmp_unregister_root(int gtid);
3567extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3568
3569extern int __kmp_ignore_mppbeg(void);
3570extern int __kmp_ignore_mppend(void);
3571
3572extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3573extern void __kmp_exit_single(int gtid);
3574
3575extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3576extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3577
3578#ifdef USE_LOAD_BALANCE
3579extern int __kmp_get_load_balance(int);
3580#endif
3581
3582extern int __kmp_get_global_thread_id(void);
3583extern int __kmp_get_global_thread_id_reg(void);
3584extern void __kmp_exit_thread(int exit_status);
3585extern void __kmp_abort(char const *format, ...);
3586extern void __kmp_abort_thread(void);
3587KMP_NORETURN extern void __kmp_abort_process(void);
3588extern void __kmp_warn(char const *format, ...);
3589
3590extern void __kmp_set_num_threads(int new_nth, int gtid);
3591
3592// Returns current thread (pointer to kmp_info_t). Current thread *must* be
3593// registered.
3594static inline kmp_info_t *__kmp_entry_thread() {
3595 int gtid = __kmp_entry_gtid();
3596
3597 return __kmp_threads[gtid];
3598}
3599
3600extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3601extern int __kmp_get_max_active_levels(int gtid);
3602extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3603extern int __kmp_get_team_size(int gtid, int level);
3604extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3605extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3606
3607extern unsigned short __kmp_get_random(kmp_info_t *thread);
3608extern void __kmp_init_random(kmp_info_t *thread);
3609
3610extern kmp_r_sched_t __kmp_get_schedule_global(void);
3611extern void __kmp_adjust_num_threads(int new_nproc);
3612extern void __kmp_check_stksize(size_t *val);
3613
3614extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3615extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3616extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3617#define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3618#define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3619#define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3620
3621#if USE_FAST_MEMORY
3622extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3623 size_t size KMP_SRC_LOC_DECL);
3624extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3625extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3626extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3627#define __kmp_fast_allocate(this_thr, size) \
3628 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3629#define __kmp_fast_free(this_thr, ptr) \
3630 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3631#endif
3632
3633extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3634extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3635 size_t elsize KMP_SRC_LOC_DECL);
3636extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3637 size_t size KMP_SRC_LOC_DECL);
3638extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3639#define __kmp_thread_malloc(th, size) \
3640 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3641#define __kmp_thread_calloc(th, nelem, elsize) \
3642 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3643#define __kmp_thread_realloc(th, ptr, size) \
3644 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3645#define __kmp_thread_free(th, ptr) \
3646 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3647
3648extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3649
3650extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3651 kmp_proc_bind_t proc_bind);
3652extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3653 int num_threads);
3654extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3655 int num_teams_ub, int num_threads);
3656
3657extern void __kmp_yield();
3658
3659extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3660 enum sched_type schedule, kmp_int32 lb,
3661 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3662extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3663 enum sched_type schedule, kmp_uint32 lb,
3664 kmp_uint32 ub, kmp_int32 st,
3665 kmp_int32 chunk);
3666extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3667 enum sched_type schedule, kmp_int64 lb,
3668 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3669extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3670 enum sched_type schedule, kmp_uint64 lb,
3671 kmp_uint64 ub, kmp_int64 st,
3672 kmp_int64 chunk);
3673
3674extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3675 kmp_int32 *p_last, kmp_int32 *p_lb,
3676 kmp_int32 *p_ub, kmp_int32 *p_st);
3677extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3678 kmp_int32 *p_last, kmp_uint32 *p_lb,
3679 kmp_uint32 *p_ub, kmp_int32 *p_st);
3680extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3681 kmp_int32 *p_last, kmp_int64 *p_lb,
3682 kmp_int64 *p_ub, kmp_int64 *p_st);
3683extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3684 kmp_int32 *p_last, kmp_uint64 *p_lb,
3685 kmp_uint64 *p_ub, kmp_int64 *p_st);
3686
3687extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3688extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3689extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3690extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3691
3692#ifdef KMP_GOMP_COMPAT
3693
3694extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3695 enum sched_type schedule, kmp_int32 lb,
3696 kmp_int32 ub, kmp_int32 st,
3697 kmp_int32 chunk, int push_ws);
3698extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3699 enum sched_type schedule, kmp_uint32 lb,
3700 kmp_uint32 ub, kmp_int32 st,
3701 kmp_int32 chunk, int push_ws);
3702extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3703 enum sched_type schedule, kmp_int64 lb,
3704 kmp_int64 ub, kmp_int64 st,
3705 kmp_int64 chunk, int push_ws);
3706extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3707 enum sched_type schedule, kmp_uint64 lb,
3708 kmp_uint64 ub, kmp_int64 st,
3709 kmp_int64 chunk, int push_ws);
3710extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3711extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3712extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3713extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3714
3715#endif /* KMP_GOMP_COMPAT */
3716
3717extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3718extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3719extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3720extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3721extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3722extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3723 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3724 void *obj);
3725extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3726 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3727
3728extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3729 int final_spin
3730#if USE_ITT_BUILD
3731 ,
3732 void *itt_sync_obj
3733#endif
3734);
3735extern void __kmp_release_64(kmp_flag_64<> *flag);
3736
3737extern void __kmp_infinite_loop(void);
3738
3739extern void __kmp_cleanup(void);
3740
3741#if KMP_HANDLE_SIGNALS
3742extern int __kmp_handle_signals;
3743extern void __kmp_install_signals(int parallel_init);
3744extern void __kmp_remove_signals(void);
3745#endif
3746
3747extern void __kmp_clear_system_time(void);
3748extern void __kmp_read_system_time(double *delta);
3749
3750extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3751
3752extern void __kmp_expand_host_name(char *buffer, size_t size);
3753extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3754
3755#if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM))
3756extern void
3757__kmp_initialize_system_tick(void); /* Initialize timer tick value */
3758#endif
3759
3760extern void
3761__kmp_runtime_initialize(void); /* machine specific initialization */
3762extern void __kmp_runtime_destroy(void);
3763
3764#if KMP_AFFINITY_SUPPORTED
3765extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3766 kmp_affin_mask_t *mask);
3767extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3768 kmp_affin_mask_t *mask);
3769extern void __kmp_affinity_initialize(kmp_affinity_t &affinity);
3770extern void __kmp_affinity_uninitialize(void);
3771extern void __kmp_affinity_set_init_mask(
3772 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3773extern void __kmp_affinity_set_place(int gtid);
3774extern void __kmp_affinity_determine_capable(const char *env_var);
3775extern int __kmp_aux_set_affinity(void **mask);
3776extern int __kmp_aux_get_affinity(void **mask);
3777extern int __kmp_aux_get_affinity_max_proc();
3778extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3779extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3780extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3781extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3782#if KMP_OS_LINUX || KMP_OS_FREEBSD
3783extern int kmp_set_thread_affinity_mask_initial(void);
3784#endif
3785static inline void __kmp_assign_root_init_mask() {
3786 int gtid = __kmp_entry_gtid();
3787 kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3788 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3789 __kmp_affinity_set_init_mask(gtid, TRUE);
3790 r->r.r_affinity_assigned = TRUE;
3791 }
3792}
3793static inline void __kmp_reset_root_init_mask(int gtid) {
3794 if (!KMP_AFFINITY_CAPABLE())
3795 return;
3796 kmp_info_t *th = __kmp_threads[gtid];
3797 kmp_root_t *r = th->th.th_root;
3798 if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) {
3799 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
3800 KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask);
3801 r->r.r_affinity_assigned = FALSE;
3802 }
3803}
3804#else /* KMP_AFFINITY_SUPPORTED */
3805#define __kmp_assign_root_init_mask() /* Nothing */
3806static inline void __kmp_reset_root_init_mask(int gtid) {}
3807#endif /* KMP_AFFINITY_SUPPORTED */
3808// No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3809// format string is for affinity, so platforms that do not support
3810// affinity can still use the other fields, e.g., %n for num_threads
3811extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3812 kmp_str_buf_t *buffer);
3813extern void __kmp_aux_display_affinity(int gtid, const char *format);
3814
3815extern void __kmp_cleanup_hierarchy();
3816extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3817
3818#if KMP_USE_FUTEX
3819
3820extern int __kmp_futex_determine_capable(void);
3821
3822#endif // KMP_USE_FUTEX
3823
3824extern void __kmp_gtid_set_specific(int gtid);
3825extern int __kmp_gtid_get_specific(void);
3826
3827extern double __kmp_read_cpu_time(void);
3828
3829extern int __kmp_read_system_info(struct kmp_sys_info *info);
3830
3831#if KMP_USE_MONITOR
3832extern void __kmp_create_monitor(kmp_info_t *th);
3833#endif
3834
3835extern void *__kmp_launch_thread(kmp_info_t *thr);
3836
3837extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3838
3839#if KMP_OS_WINDOWS
3840extern int __kmp_still_running(kmp_info_t *th);
3841extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3842extern void __kmp_free_handle(kmp_thread_t tHandle);
3843#endif
3844
3845#if KMP_USE_MONITOR
3846extern void __kmp_reap_monitor(kmp_info_t *th);
3847#endif
3848extern void __kmp_reap_worker(kmp_info_t *th);
3849extern void __kmp_terminate_thread(int gtid);
3850
3851extern int __kmp_try_suspend_mx(kmp_info_t *th);
3852extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3853extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3854
3855extern void __kmp_elapsed(double *);
3856extern void __kmp_elapsed_tick(double *);
3857
3858extern void __kmp_enable(int old_state);
3859extern void __kmp_disable(int *old_state);
3860
3861extern void __kmp_thread_sleep(int millis);
3862
3863extern void __kmp_common_initialize(void);
3864extern void __kmp_common_destroy(void);
3865extern void __kmp_common_destroy_gtid(int gtid);
3866
3867#if KMP_OS_UNIX
3868extern void __kmp_register_atfork(void);
3869#endif
3870extern void __kmp_suspend_initialize(void);
3871extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3872extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3873
3874extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3875 int tid);
3876extern kmp_team_t *
3877__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3878#if OMPT_SUPPORT
3879 ompt_data_t ompt_parallel_data,
3880#endif
3881 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3882 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3883extern void __kmp_free_thread(kmp_info_t *);
3884extern void __kmp_free_team(kmp_root_t *,
3885 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3886extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3887
3888/* ------------------------------------------------------------------------ */
3889
3890extern void __kmp_initialize_bget(kmp_info_t *th);
3891extern void __kmp_finalize_bget(kmp_info_t *th);
3892
3893KMP_EXPORT void *kmpc_malloc(size_t size);
3894KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3895KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3896KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3897KMP_EXPORT void kmpc_free(void *ptr);
3898
3899/* declarations for internal use */
3900
3901extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3902 size_t reduce_size, void *reduce_data,
3903 void (*reduce)(void *, void *));
3904extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3905extern int __kmp_barrier_gomp_cancel(int gtid);
3906
3911enum fork_context_e {
3912 fork_context_gnu,
3914 fork_context_intel,
3915 fork_context_last
3916};
3917extern int __kmp_fork_call(ident_t *loc, int gtid,
3918 enum fork_context_e fork_context, kmp_int32 argc,
3919 microtask_t microtask, launch_t invoker,
3920 kmp_va_list ap);
3921
3922extern void __kmp_join_call(ident_t *loc, int gtid
3923#if OMPT_SUPPORT
3924 ,
3925 enum fork_context_e fork_context
3926#endif
3927 ,
3928 int exit_teams = 0);
3929
3930extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3931extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3932extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3933extern int __kmp_invoke_task_func(int gtid);
3934extern void __kmp_run_before_invoked_task(int gtid, int tid,
3935 kmp_info_t *this_thr,
3936 kmp_team_t *team);
3937extern void __kmp_run_after_invoked_task(int gtid, int tid,
3938 kmp_info_t *this_thr,
3939 kmp_team_t *team);
3940
3941// should never have been exported
3942KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3943extern int __kmp_invoke_teams_master(int gtid);
3944extern void __kmp_teams_master(int gtid);
3945extern int __kmp_aux_get_team_num();
3946extern int __kmp_aux_get_num_teams();
3947extern void __kmp_save_internal_controls(kmp_info_t *thread);
3948extern void __kmp_user_set_library(enum library_type arg);
3949extern void __kmp_aux_set_library(enum library_type arg);
3950extern void __kmp_aux_set_stacksize(size_t arg);
3951extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3952extern void __kmp_aux_set_defaults(char const *str, size_t len);
3953
3954/* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3955void kmpc_set_blocktime(int arg);
3956void ompc_set_nested(int flag);
3957void ompc_set_dynamic(int flag);
3958void ompc_set_num_threads(int arg);
3959
3960extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3961 kmp_team_t *team, int tid);
3962extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3963extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3964 kmp_tasking_flags_t *flags,
3965 size_t sizeof_kmp_task_t,
3966 size_t sizeof_shareds,
3967 kmp_routine_entry_t task_entry);
3968extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3969 kmp_team_t *team, int tid,
3970 int set_curr_task);
3971extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3972extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3973
3974extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3975 int gtid,
3976 kmp_task_t *task);
3977extern void __kmp_fulfill_event(kmp_event_t *event);
3978
3979extern void __kmp_free_task_team(kmp_info_t *thread,
3980 kmp_task_team_t *task_team);
3981extern void __kmp_reap_task_teams(void);
3982extern void __kmp_wait_to_unref_task_teams(void);
3983extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3984 int always);
3985extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3986extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3987#if USE_ITT_BUILD
3988 ,
3989 void *itt_sync_obj
3990#endif /* USE_ITT_BUILD */
3991 ,
3992 int wait = 1);
3993extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3994 int gtid);
3995
3996extern int __kmp_is_address_mapped(void *addr);
3997extern kmp_uint64 __kmp_hardware_timestamp(void);
3998
3999#if KMP_OS_UNIX
4000extern int __kmp_read_from_file(char const *path, char const *format, ...);
4001#endif
4002
4003/* ------------------------------------------------------------------------ */
4004//
4005// Assembly routines that have no compiler intrinsic replacement
4006//
4007
4008extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
4009 void *argv[]
4010#if OMPT_SUPPORT
4011 ,
4012 void **exit_frame_ptr
4013#endif
4014);
4015
4016/* ------------------------------------------------------------------------ */
4017
4018KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
4019KMP_EXPORT void __kmpc_end(ident_t *);
4020
4021KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
4022 kmpc_ctor_vec ctor,
4023 kmpc_cctor_vec cctor,
4024 kmpc_dtor_vec dtor,
4025 size_t vector_length);
4026KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
4027 kmpc_ctor ctor, kmpc_cctor cctor,
4028 kmpc_dtor dtor);
4029KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
4030 void *data, size_t size);
4031
4032KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
4033KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
4034KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
4035KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
4036
4037KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
4038KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
4039 kmpc_micro microtask, ...);
4040KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs,
4041 kmpc_micro microtask, kmp_int32 cond,
4042 void *args);
4043
4044KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
4045KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
4046
4047KMP_EXPORT void __kmpc_flush(ident_t *);
4048KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
4049KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
4050KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
4051KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
4052 kmp_int32 filter);
4053KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
4054KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
4055KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
4056KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
4057 kmp_critical_name *);
4058KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
4059 kmp_critical_name *);
4060KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
4061 kmp_critical_name *, uint32_t hint);
4062
4063KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
4064KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
4065
4066KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
4067 kmp_int32 global_tid);
4068
4069KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
4070KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
4071
4072KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
4073KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
4074 kmp_int32 numberOfSections);
4075KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
4076
4077KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
4078 kmp_int32 schedtype, kmp_int32 *plastiter,
4079 kmp_int *plower, kmp_int *pupper,
4080 kmp_int *pstride, kmp_int incr,
4081 kmp_int chunk);
4082
4083KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
4084
4085KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
4086 size_t cpy_size, void *cpy_data,
4087 void (*cpy_func)(void *, void *),
4088 kmp_int32 didit);
4089
4090KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
4091 void *cpy_data);
4092
4093extern void KMPC_SET_NUM_THREADS(int arg);
4094extern void KMPC_SET_DYNAMIC(int flag);
4095extern void KMPC_SET_NESTED(int flag);
4096
4097/* OMP 3.0 tasking interface routines */
4098KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
4099 kmp_task_t *new_task);
4100KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4101 kmp_int32 flags,
4102 size_t sizeof_kmp_task_t,
4103 size_t sizeof_shareds,
4104 kmp_routine_entry_t task_entry);
4105KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
4106 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
4107 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
4108KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
4109 kmp_task_t *task);
4110KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
4111 kmp_task_t *task);
4112KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
4113 kmp_task_t *new_task);
4114KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
4115KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
4116 int end_part);
4117
4118#if TASK_UNUSED
4119void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
4120void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
4121 kmp_task_t *task);
4122#endif // TASK_UNUSED
4123
4124/* ------------------------------------------------------------------------ */
4125
4126KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
4127KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
4128
4129KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
4130 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
4131 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
4132 kmp_depend_info_t *noalias_dep_list);
4133KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
4134 kmp_int32 ndeps,
4135 kmp_depend_info_t *dep_list,
4136 kmp_int32 ndeps_noalias,
4137 kmp_depend_info_t *noalias_dep_list);
4138/* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
4139 * Placeholder for taskwait with nowait clause.*/
4140KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
4141 kmp_int32 ndeps,
4142 kmp_depend_info_t *dep_list,
4143 kmp_int32 ndeps_noalias,
4144 kmp_depend_info_t *noalias_dep_list,
4145 kmp_int32 has_no_wait);
4146
4147extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
4148 bool serialize_immediate);
4149
4150KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
4151 kmp_int32 cncl_kind);
4152KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
4153 kmp_int32 cncl_kind);
4154KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
4155KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
4156
4157KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
4158KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
4159KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
4160 kmp_int32 if_val, kmp_uint64 *lb,
4161 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
4162 kmp_int32 sched, kmp_uint64 grainsize,
4163 void *task_dup);
4164KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
4165 kmp_task_t *task, kmp_int32 if_val,
4166 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4167 kmp_int32 nogroup, kmp_int32 sched,
4168 kmp_uint64 grainsize, kmp_int32 modifier,
4169 void *task_dup);
4170KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
4171KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
4172KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
4173KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
4174 int is_ws, int num,
4175 void *data);
4176KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
4177 int num, void *data);
4178KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
4179 int is_ws);
4180KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
4181 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
4182 kmp_task_affinity_info_t *affin_list);
4183KMP_EXPORT void __kmp_set_num_teams(int num_teams);
4184KMP_EXPORT int __kmp_get_max_teams(void);
4185KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
4186KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4187
4188/* Interface target task integration */
4189KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid);
4190KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid);
4191
4192/* Lock interface routines (fast versions with gtid passed in) */
4193KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4194 void **user_lock);
4195KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4196 void **user_lock);
4197KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4198 void **user_lock);
4199KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4200 void **user_lock);
4201KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4202KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4203 void **user_lock);
4204KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4205 void **user_lock);
4206KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4207 void **user_lock);
4208KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4209KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4210 void **user_lock);
4211
4212KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4213 void **user_lock, uintptr_t hint);
4214KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4215 void **user_lock,
4216 uintptr_t hint);
4217
4218#if OMPX_TASKGRAPH
4219// Taskgraph's Record & Replay mechanism
4220// __kmp_tdg_is_recording: check whether a given TDG is recording
4221// status: the tdg's current status
4222static inline bool __kmp_tdg_is_recording(kmp_tdg_status_t status) {
4223 return status == KMP_TDG_RECORDING;
4224}
4225
4226KMP_EXPORT kmp_int32 __kmpc_start_record_task(ident_t *loc, kmp_int32 gtid,
4227 kmp_int32 input_flags,
4228 kmp_int32 tdg_id);
4229KMP_EXPORT void __kmpc_end_record_task(ident_t *loc, kmp_int32 gtid,
4230 kmp_int32 input_flags, kmp_int32 tdg_id);
4231#endif
4232/* Interface to fast scalable reduce methods routines */
4233
4234KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4235 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4236 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4237 kmp_critical_name *lck);
4238KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4239 kmp_critical_name *lck);
4240KMP_EXPORT kmp_int32 __kmpc_reduce(
4241 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4242 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4243 kmp_critical_name *lck);
4244KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4245 kmp_critical_name *lck);
4246
4247/* Internal fast reduction routines */
4248
4249extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4250 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4251 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4252 kmp_critical_name *lck);
4253
4254// this function is for testing set/get/determine reduce method
4255KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4256
4257KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4258KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4259
4260// C++ port
4261// missing 'extern "C"' declarations
4262
4263KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4264KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4265KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4266 kmp_int32 num_threads);
4267
4268KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4269 int proc_bind);
4270KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4271 kmp_int32 num_teams,
4272 kmp_int32 num_threads);
4273/* Function for OpenMP 5.1 num_teams clause */
4274KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4275 kmp_int32 num_teams_lb,
4276 kmp_int32 num_teams_ub,
4277 kmp_int32 num_threads);
4278KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4279 kmpc_micro microtask, ...);
4280struct kmp_dim { // loop bounds info casted to kmp_int64
4281 kmp_int64 lo; // lower
4282 kmp_int64 up; // upper
4283 kmp_int64 st; // stride
4284};
4285KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4286 kmp_int32 num_dims,
4287 const struct kmp_dim *dims);
4288KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4289 const kmp_int64 *vec);
4290KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4291 const kmp_int64 *vec);
4292KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4293
4294KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4295 void *data, size_t size,
4296 void ***cache);
4297
4298// The routines below are not exported.
4299// Consider making them 'static' in corresponding source files.
4300void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4301 void *data_addr, size_t pc_size);
4302struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4303 void *data_addr,
4304 size_t pc_size);
4305void __kmp_threadprivate_resize_cache(int newCapacity);
4306void __kmp_cleanup_threadprivate_caches();
4307
4308// ompc_, kmpc_ entries moved from omp.h.
4309#if KMP_OS_WINDOWS
4310#define KMPC_CONVENTION __cdecl
4311#else
4312#define KMPC_CONVENTION
4313#endif
4314
4315#ifndef __OMP_H
4316typedef enum omp_sched_t {
4317 omp_sched_static = 1,
4318 omp_sched_dynamic = 2,
4319 omp_sched_guided = 3,
4320 omp_sched_auto = 4
4321} omp_sched_t;
4322typedef void *kmp_affinity_mask_t;
4323#endif
4324
4325KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4326KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4327KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4328KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4329KMP_EXPORT int KMPC_CONVENTION
4330kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4331KMP_EXPORT int KMPC_CONVENTION
4332kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4333KMP_EXPORT int KMPC_CONVENTION
4334kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4335
4336KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4337KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4338KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4339KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4340KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4341void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4342size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4343void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4344size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4345 char const *format);
4346
4347enum kmp_target_offload_kind {
4348 tgt_disabled = 0,
4349 tgt_default = 1,
4350 tgt_mandatory = 2
4351};
4352typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4353// Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4354extern kmp_target_offload_kind_t __kmp_target_offload;
4355extern int __kmpc_get_target_offload();
4356
4357// Constants used in libomptarget
4358#define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4359#define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4360
4361// OMP Pause Resource
4362
4363// The following enum is used both to set the status in __kmp_pause_status, and
4364// as the internal equivalent of the externally-visible omp_pause_resource_t.
4365typedef enum kmp_pause_status_t {
4366 kmp_not_paused = 0, // status is not paused, or, requesting resume
4367 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4368 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4369} kmp_pause_status_t;
4370
4371// This stores the pause state of the runtime
4372extern kmp_pause_status_t __kmp_pause_status;
4373extern int __kmpc_pause_resource(kmp_pause_status_t level);
4374extern int __kmp_pause_resource(kmp_pause_status_t level);
4375// Soft resume sets __kmp_pause_status, and wakes up all threads.
4376extern void __kmp_resume_if_soft_paused();
4377// Hard resume simply resets the status to not paused. Library will appear to
4378// be uninitialized after hard pause. Let OMP constructs trigger required
4379// initializations.
4380static inline void __kmp_resume_if_hard_paused() {
4381 if (__kmp_pause_status == kmp_hard_paused) {
4382 __kmp_pause_status = kmp_not_paused;
4383 }
4384}
4385
4386extern void __kmp_omp_display_env(int verbose);
4387
4388// 1: it is initializing hidden helper team
4389extern volatile int __kmp_init_hidden_helper;
4390// 1: the hidden helper team is done
4391extern volatile int __kmp_hidden_helper_team_done;
4392// 1: enable hidden helper task
4393extern kmp_int32 __kmp_enable_hidden_helper;
4394// Main thread of hidden helper team
4395extern kmp_info_t *__kmp_hidden_helper_main_thread;
4396// Descriptors for the hidden helper threads
4397extern kmp_info_t **__kmp_hidden_helper_threads;
4398// Number of hidden helper threads
4399extern kmp_int32 __kmp_hidden_helper_threads_num;
4400// Number of hidden helper tasks that have not been executed yet
4401extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4402
4403extern void __kmp_hidden_helper_initialize();
4404extern void __kmp_hidden_helper_threads_initz_routine();
4405extern void __kmp_do_initialize_hidden_helper_threads();
4406extern void __kmp_hidden_helper_threads_initz_wait();
4407extern void __kmp_hidden_helper_initz_release();
4408extern void __kmp_hidden_helper_threads_deinitz_wait();
4409extern void __kmp_hidden_helper_threads_deinitz_release();
4410extern void __kmp_hidden_helper_main_thread_wait();
4411extern void __kmp_hidden_helper_worker_thread_wait();
4412extern void __kmp_hidden_helper_worker_thread_signal();
4413extern void __kmp_hidden_helper_main_thread_release();
4414
4415// Check whether a given thread is a hidden helper thread
4416#define KMP_HIDDEN_HELPER_THREAD(gtid) \
4417 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4418
4419#define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4420 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4421
4422#define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \
4423 ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4424
4425#define KMP_HIDDEN_HELPER_TEAM(team) \
4426 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4427
4428// Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4429// main thread, is skipped.
4430#define KMP_GTID_TO_SHADOW_GTID(gtid) \
4431 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4432
4433// Return the adjusted gtid value by subtracting from gtid the number
4434// of hidden helper threads. This adjusted value is the gtid the thread would
4435// have received if there were no hidden helper threads.
4436static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4437 int adjusted_gtid = gtid;
4438 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4439 gtid - __kmp_hidden_helper_threads_num >= 0) {
4440 adjusted_gtid -= __kmp_hidden_helper_threads_num;
4441 }
4442 return adjusted_gtid;
4443}
4444
4445// Support for error directive
4446typedef enum kmp_severity_t {
4447 severity_warning = 1,
4448 severity_fatal = 2
4449} kmp_severity_t;
4450extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4451
4452// Support for scope directive
4453KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4454KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4455
4456#ifdef __cplusplus
4457}
4458#endif
4459
4460template <bool C, bool S>
4461extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4462template <bool C, bool S>
4463extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4464template <bool C, bool S>
4465extern void __kmp_atomic_suspend_64(int th_gtid,
4466 kmp_atomic_flag_64<C, S> *flag);
4467extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4468#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4469template <bool C, bool S>
4470extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4471template <bool C, bool S>
4472extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4473template <bool C, bool S>
4474extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4475extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4476#endif
4477template <bool C, bool S>
4478extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4479template <bool C, bool S>
4480extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4481template <bool C, bool S>
4482extern void __kmp_atomic_resume_64(int target_gtid,
4483 kmp_atomic_flag_64<C, S> *flag);
4484extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4485
4486template <bool C, bool S>
4487int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4488 kmp_flag_32<C, S> *flag, int final_spin,
4489 int *thread_finished,
4490#if USE_ITT_BUILD
4491 void *itt_sync_obj,
4492#endif /* USE_ITT_BUILD */
4493 kmp_int32 is_constrained);
4494template <bool C, bool S>
4495int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4496 kmp_flag_64<C, S> *flag, int final_spin,
4497 int *thread_finished,
4498#if USE_ITT_BUILD
4499 void *itt_sync_obj,
4500#endif /* USE_ITT_BUILD */
4501 kmp_int32 is_constrained);
4502template <bool C, bool S>
4503int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4504 kmp_atomic_flag_64<C, S> *flag,
4505 int final_spin, int *thread_finished,
4506#if USE_ITT_BUILD
4507 void *itt_sync_obj,
4508#endif /* USE_ITT_BUILD */
4509 kmp_int32 is_constrained);
4510int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4511 kmp_flag_oncore *flag, int final_spin,
4512 int *thread_finished,
4513#if USE_ITT_BUILD
4514 void *itt_sync_obj,
4515#endif /* USE_ITT_BUILD */
4516 kmp_int32 is_constrained);
4517
4518extern int __kmp_nesting_mode;
4519extern int __kmp_nesting_mode_nlevels;
4520extern int *__kmp_nesting_nth_level;
4521extern void __kmp_init_nesting_mode();
4522extern void __kmp_set_nesting_mode_threads();
4523
4531 FILE *f;
4532
4533 void close() {
4534 if (f && f != stdout && f != stderr) {
4535 fclose(f);
4536 f = nullptr;
4537 }
4538 }
4539
4540public:
4541 kmp_safe_raii_file_t() : f(nullptr) {}
4542 kmp_safe_raii_file_t(const char *filename, const char *mode,
4543 const char *env_var = nullptr)
4544 : f(nullptr) {
4545 open(filename, mode, env_var);
4546 }
4547 ~kmp_safe_raii_file_t() { close(); }
4548
4552 void open(const char *filename, const char *mode,
4553 const char *env_var = nullptr) {
4554 KMP_ASSERT(!f);
4555 f = fopen(filename, mode);
4556 if (!f) {
4557 int code = errno;
4558 if (env_var) {
4559 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4560 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4561 } else {
4562 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4563 __kmp_msg_null);
4564 }
4565 }
4566 }
4569 int try_open(const char *filename, const char *mode) {
4570 KMP_ASSERT(!f);
4571 f = fopen(filename, mode);
4572 if (!f)
4573 return errno;
4574 return 0;
4575 }
4578 void set_stdout() {
4579 KMP_ASSERT(!f);
4580 f = stdout;
4581 }
4584 void set_stderr() {
4585 KMP_ASSERT(!f);
4586 f = stderr;
4587 }
4588 operator bool() { return bool(f); }
4589 operator FILE *() { return f; }
4590};
4591
4592template <typename SourceType, typename TargetType,
4593 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4594 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4595 bool isSourceSigned = std::is_signed<SourceType>::value,
4596 bool isTargetSigned = std::is_signed<TargetType>::value>
4597struct kmp_convert {};
4598
4599// Both types are signed; Source smaller
4600template <typename SourceType, typename TargetType>
4601struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4602 static TargetType to(SourceType src) { return (TargetType)src; }
4603};
4604// Source equal
4605template <typename SourceType, typename TargetType>
4606struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4607 static TargetType to(SourceType src) { return src; }
4608};
4609// Source bigger
4610template <typename SourceType, typename TargetType>
4611struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4612 static TargetType to(SourceType src) {
4613 KMP_ASSERT(src <= static_cast<SourceType>(
4614 (std::numeric_limits<TargetType>::max)()));
4615 KMP_ASSERT(src >= static_cast<SourceType>(
4616 (std::numeric_limits<TargetType>::min)()));
4617 return (TargetType)src;
4618 }
4619};
4620
4621// Source signed, Target unsigned
4622// Source smaller
4623template <typename SourceType, typename TargetType>
4624struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4625 static TargetType to(SourceType src) {
4626 KMP_ASSERT(src >= 0);
4627 return (TargetType)src;
4628 }
4629};
4630// Source equal
4631template <typename SourceType, typename TargetType>
4632struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4633 static TargetType to(SourceType src) {
4634 KMP_ASSERT(src >= 0);
4635 return (TargetType)src;
4636 }
4637};
4638// Source bigger
4639template <typename SourceType, typename TargetType>
4640struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4641 static TargetType to(SourceType src) {
4642 KMP_ASSERT(src >= 0);
4643 KMP_ASSERT(src <= static_cast<SourceType>(
4644 (std::numeric_limits<TargetType>::max)()));
4645 return (TargetType)src;
4646 }
4647};
4648
4649// Source unsigned, Target signed
4650// Source smaller
4651template <typename SourceType, typename TargetType>
4652struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4653 static TargetType to(SourceType src) { return (TargetType)src; }
4654};
4655// Source equal
4656template <typename SourceType, typename TargetType>
4657struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4658 static TargetType to(SourceType src) {
4659 KMP_ASSERT(src <= static_cast<SourceType>(
4660 (std::numeric_limits<TargetType>::max)()));
4661 return (TargetType)src;
4662 }
4663};
4664// Source bigger
4665template <typename SourceType, typename TargetType>
4666struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4667 static TargetType to(SourceType src) {
4668 KMP_ASSERT(src <= static_cast<SourceType>(
4669 (std::numeric_limits<TargetType>::max)()));
4670 return (TargetType)src;
4671 }
4672};
4673
4674// Source unsigned, Target unsigned
4675// Source smaller
4676template <typename SourceType, typename TargetType>
4677struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4678 static TargetType to(SourceType src) { return (TargetType)src; }
4679};
4680// Source equal
4681template <typename SourceType, typename TargetType>
4682struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4683 static TargetType to(SourceType src) { return src; }
4684};
4685// Source bigger
4686template <typename SourceType, typename TargetType>
4687struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4688 static TargetType to(SourceType src) {
4689 KMP_ASSERT(src <= static_cast<SourceType>(
4690 (std::numeric_limits<TargetType>::max)()));
4691 return (TargetType)src;
4692 }
4693};
4694
4695template <typename T1, typename T2>
4696static inline void __kmp_type_convert(T1 src, T2 *dest) {
4697 *dest = kmp_convert<T1, T2>::to(src);
4698}
4699
4700#endif /* KMP_H */
void set_stdout()
Definition: kmp.h:4578
void set_stderr()
Definition: kmp.h:4584
int try_open(const char *filename, const char *mode)
Definition: kmp.h:4569
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4552
struct ident ident_t
@ KMP_IDENT_KMPC
Definition: kmp.h:196
@ KMP_IDENT_IMB
Definition: kmp.h:194
@ KMP_IDENT_WORK_LOOP
Definition: kmp.h:214
@ KMP_IDENT_BARRIER_IMPL
Definition: kmp.h:205
@ KMP_IDENT_WORK_SECTIONS
Definition: kmp.h:216
@ KMP_IDENT_AUTOPAR
Definition: kmp.h:199
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition: kmp.h:223
@ KMP_IDENT_WORK_DISTRIBUTE
Definition: kmp.h:218
@ KMP_IDENT_BARRIER_EXPL
Definition: kmp.h:203
@ KMP_IDENT_ATOMIC_REDUCE
Definition: kmp.h:201
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs, kmpc_micro microtask, kmp_int32 cond, void *args)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1689
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
KMP_EXPORT void ** __kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid)
void(* kmpc_dtor)(void *)
Definition: kmp.h:1713
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1720
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1742
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1707
KMP_EXPORT void * __kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid, void *cpy_data)
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1730
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1736
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
sched_type
Definition: kmp.h:357
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid, kmp_int32 numberOfSections)
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition: kmp.h:408
@ kmp_sch_runtime_simd
Definition: kmp.h:379
@ kmp_nm_ord_auto
Definition: kmp.h:427
@ kmp_sch_auto
Definition: kmp.h:364
@ kmp_nm_auto
Definition: kmp.h:410
@ kmp_distribute_static_chunked
Definition: kmp.h:395
@ kmp_sch_static
Definition: kmp.h:360
@ kmp_sch_guided_simd
Definition: kmp.h:378
@ kmp_sch_modifier_monotonic
Definition: kmp.h:445
@ kmp_sch_default
Definition: kmp.h:465
@ kmp_sch_modifier_nonmonotonic
Definition: kmp.h:447
@ kmp_nm_ord_static
Definition: kmp.h:423
@ kmp_distribute_static
Definition: kmp.h:396
@ kmp_sch_guided_chunked
Definition: kmp.h:362
@ kmp_nm_static
Definition: kmp.h:406
@ kmp_sch_lower
Definition: kmp.h:358
@ kmp_nm_upper
Definition: kmp.h:429
@ kmp_ord_lower
Definition: kmp.h:384
@ kmp_ord_static
Definition: kmp.h:386
@ kmp_sch_upper
Definition: kmp.h:382
@ kmp_ord_upper
Definition: kmp.h:392
@ kmp_nm_lower
Definition: kmp.h:402
@ kmp_ord_auto
Definition: kmp.h:390
Definition: kmp.h:234
kmp_int32 reserved_1
Definition: kmp.h:235
char const * psource
Definition: kmp.h:244
kmp_int32 reserved_2
Definition: kmp.h:238
kmp_int32 reserved_3
Definition: kmp.h:243
kmp_int32 flags
Definition: kmp.h:236