casacore
Polynomial.h
Go to the documentation of this file.
1//# Polynomial.h: A one dimensional polynomial class
2//# Copyright (C) 1994,1995,1996,2001,2002,2005
3//# Associated Universities, Inc. Washington DC, USA.
4//#
5//# This library is free software; you can redistribute it and/or modify it
6//# under the terms of the GNU Library General Public License as published by
7//# the Free Software Foundation; either version 2 of the License, or (at your
8//# option) any later version.
9//#
10//# This library is distributed in the hope that it will be useful, but WITHOUT
11//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
13//# License for more details.
14//#
15//# You should have received a copy of the GNU Library General Public License
16//# along with this library; if not, write to the Free Software Foundation,
17//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
18//#
19//# Correspondence concerning AIPS++ should be addressed as follows:
20//# Internet email: aips2-request@nrao.edu.
21//# Postal address: AIPS++ Project Office
22//# National Radio Astronomy Observatory
23//# 520 Edgemont Road
24//# Charlottesville, VA 22903-2475 USA
25//#
26//# $Id$
27
28#ifndef SCIMATH_POLYNOMIAL_H
29#define SCIMATH_POLYNOMIAL_H
30
31//# Includes
32#include <casacore/casa/aips.h>
33#include <casacore/scimath/Functionals/PolynomialParam.h>
34#include <casacore/scimath/Functionals/Function1D.h>
35#include <casacore/scimath/Mathematics/AutoDiff.h>
36#include <casacore/scimath/Mathematics/AutoDiffMath.h>
37
38namespace casacore { //# NAMESPACE CASACORE - BEGIN
39
40//# Forward declarations
41
42// <summary> A one dimensional polynomial class
43// </summary>
44
45// <reviewed reviewer="tcornwel" date="1996/02/22" tests="tPolynomial"
46// demos="">
47// </reviewed>
48
49// <prerequisite>
50// <li> <linkto class=Function>Function</linkto>
51// </prerequisite>
52//
53// <synopsis>
54// A Polynomial<T> contains a set of coefficients; its fundamental operations
55// is evaluating itself at some "x". The number of coefficients is the order
56// of the polynomial plus one, so is the number of available parameters.
57//
58// <note role=tip>
59// The present implementation merely stores the coefficients in a Block. In the
60// unlikely case that we need to deal with polynomials with many zero
61// coefficients, a more efficient representation would be possible.
62// </note>
63// </synopsis>
64//
65// <example>
66// <srcblock>
67// Polynomial<Float> pf(3); // Third order polynomial - coeffs 0 by default
68// pf.setCoefficient(1, 1.0);
69// pf[2] = 2.0;
70// pf.setCoefficient(3, 3.0); // 3x^3 + 2x^2 + x
71// pf(2); // == 34
72// </srcblock>
73// </example>
74
75// <templating arg=T>
76// <li> T should have standard numerical operators. Current
77// implementation only tested for real types (and their AutoDiffs).
78// </templating>
79
80// <thrown>
81// <li> Assertion in debug mode if attempt is made to address incorrect
82// coefficients
83// </thrown>
84
85// <todo asof="1995/08/25">
86// <li> Global functions to make various ``special'' polynomials of various
87// orders will be useful eventually.
88// </todo>
89
90template<class T> class Polynomial: public PolynomialParam<T> {
91public:
92 //# Enumerations
93
94 //# Constructors
95 // Constructs a zero'th order polynomial, with a coeficcient of 0.0.
97 // Makes a polynomial of the given order, with all coeficcients set to
98 // zero.
100 // Copy constructor/assignment (deep copy)
101 // <group>
102 Polynomial(const Polynomial<T> &other) : PolynomialParam<T>(other) {}
103 template <class W>
104 Polynomial(const Polynomial<W> &other) : PolynomialParam<T>(other) {}
106 PolynomialParam<T>::operator=(other); return *this; }
107 // </group>
108
109 // Destructor
110 virtual ~Polynomial() {}
111
112 //# Operators
113 // Evaluate the polynomial at <src>x</src>.
114 virtual T eval(typename Function1D<T>::FunctionArg x) const;
115
116 //# Member functions
117 // Return the polynomial which is the derivative of this one. <em>e.g.,</em>
118 // <src> 2+4x+5x^2 --> 0+4+10x </src>.
120
121 // Return a copy of this object from the heap. The caller is responsible for
122 // deleting the pointer.
123 // <group>
124 virtual Function<T> *clone() const { return new Polynomial<T>(*this); }
129 // </group>
130
131 //# Make members of parent classes known.
132protected:
134public:
136 using PolynomialParam<T>::order;
137
138};
139
140#define Polynomial_PS Polynomial
141
142// <summary> Partial specialization of Polynomial for <src>AutoDiff</src>
143// </summary>
144
145// <synopsis>
146// <note role=warning> The name <src>Polynomial_PS</src> is only for cxx2html
147// documentation problems. Use <src>Polynomial</src> in your code.</note>
148// </synopsis>
150template <class T> class Polynomial_PS<AutoDiff<T> > :
151public PolynomialParam<AutoDiff<T> > {
152public:
153 //# Constructors
154 // Constructs one dimensional Polynomials.
155 // <group>
157 explicit Polynomial_PS(uInt order) :
158 PolynomialParam<AutoDiff<T> >(order) {}
159 // </group>
160
161 // Copy constructor (deep copy)
162 // <group>
163 Polynomial_PS(const Polynomial_PS<AutoDiff<T> > &other) :
164 PolynomialParam<AutoDiff<T> >(other) {}
165 template <class W>
166 Polynomial_PS(const Polynomial_PS<W> &other) :
167 PolynomialParam<AutoDiff<T> >(other) {}
168 // </group>
169
170 // Copy assignment (deep copy)
171 Polynomial_PS<AutoDiff<T> > &
172 operator=(const Polynomial_PS<AutoDiff<T> > &other) {
173 PolynomialParam<AutoDiff<T> >::operator=(other); return *this; }
174
175 // Destructor
176 virtual ~Polynomial_PS() {}
177
178 //# Operators
179 // Evaluate the polynomial and its derivatives at <src>x</src> <em>wrt</em>
180 // to the coefficients.
181 // <group>
182 virtual AutoDiff<T> eval(typename Function<AutoDiff<T> >::FunctionArg x) const;
183 // </group>
184
185 //# Member functions
186 // Return a copy of this object from the heap. The caller is responsible
187 // for deleting this pointer.
188 // <group>
189 virtual Function<AutoDiff<T> > *clone() const {
190 return new Polynomial<AutoDiff<T> >(*this); }
192 *cloneAD() const {
194 (*this); }
196 *cloneNonAD() const {
198 (*this); }
199 // </group>
200
201 //# Make members of parent classes known.
202protected:
203 using PolynomialParam<AutoDiff<T> >::param_p;
204public:
205 using PolynomialParam<AutoDiff<T> >::nparameters;
206 using PolynomialParam<AutoDiff<T> >::order;
207};
208
209#undef Polynomial_PS
210
211
212} //# NAMESPACE CASACORE - END
213
214#ifndef CASACORE_NO_AUTO_TEMPLATES
215#include <casacore/scimath/Functionals/Polynomial.tcc>
216#include <casacore/scimath/Functionals/Polynomial2.tcc>
217#endif //# CASACORE_NO_AUTO_TEMPLATES
218#endif
#define Polynomial_PS
Definition: Polynomial.h:140
const T * FunctionArg
Definition: Function1D.h:78
FunctionParam< T > param_p
The parameters and masks.
Definition: Function.h:332
uInt nparameters() const
Returns the number of parameters.
Definition: Function.h:230
PolynomialParam< T > & operator=(const PolynomialParam< T > &other)
uInt order() const
What is the order of the polynomial, i.e.
virtual Function< typename FunctionTraits< AutoDiff< T > >::DiffType > * cloneAD() const
Definition: Polynomial.h:191
Polynomial_PS()
Constructs one dimensional Polynomials.
Definition: Polynomial.h:155
virtual Function< typename FunctionTraits< AutoDiff< T > >::BaseType > * cloneNonAD() const
Definition: Polynomial.h:195
Polynomial_PS< AutoDiff< T > > & operator=(const Polynomial_PS< AutoDiff< T > > &other)
Copy assignment (deep copy)
Definition: Polynomial.h:171
Polynomial_PS(const Polynomial_PS< W > &other)
Definition: Polynomial.h:165
virtual AutoDiff< T > eval(typename Function< AutoDiff< T > >::FunctionArg x) const
Evaluate the polynomial and its derivatives at x wrt to the coefficients.
virtual Function< AutoDiff< T > > * clone() const
Return a copy of this object from the heap.
Definition: Polynomial.h:188
Polynomial_PS(const Polynomial_PS< AutoDiff< T > > &other)
Copy constructor (deep copy)
Definition: Polynomial.h:162
Polynomial(uInt order)
Makes a polynomial of the given order, with all coeficcients set to zero.
Definition: Polynomial.h:99
Polynomial< T > derivative() const
Return the polynomial which is the derivative of this one.
Polynomial()
Constructs a zero'th order polynomial, with a coeficcient of 0.0.
Definition: Polynomial.h:96
Polynomial(const Polynomial< T > &other)
Copy constructor/assignment (deep copy)
Definition: Polynomial.h:102
virtual Function< T > * clone() const
Return a copy of this object from the heap.
Definition: Polynomial.h:124
Polynomial(const Polynomial< W > &other)
Definition: Polynomial.h:104
virtual Function< typename FunctionTraits< T >::DiffType > * cloneAD() const
Definition: Polynomial.h:125
virtual ~Polynomial()
Destructor.
Definition: Polynomial.h:110
Polynomial< T > & operator=(const Polynomial< T > &other)
Definition: Polynomial.h:105
virtual T eval(typename Function1D< T >::FunctionArg x) const
Evaluate the polynomial at x.
virtual Function< typename FunctionTraits< T >::BaseType > * cloneNonAD() const
Definition: Polynomial.h:127
this file contains all the compiler specific defines
Definition: mainpage.dox:28
unsigned int uInt
Definition: aipstype.h:51
PtrHolder< T > & operator=(const PtrHolder< T > &other)