next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000057482 seconds elapsed
 -- 0.000591919 seconds elapsed
 -- 0.000149009 seconds elapsed
 -- 0.000057556 seconds elapsed
 -- 0.000546651 seconds elapsed
 -- 0.000146736 seconds elapsed
 -- 0.000042895 seconds elapsed
 -- 0.000039176 seconds elapsed
 -- 0.000106934 seconds elapsed
 -- 0.000057183 seconds elapsed
 -- 0.000492117 seconds elapsed
 -- 0.00013759 seconds elapsed
 -- 0.000057951 seconds elapsed
 -- 0.000488896 seconds elapsed
 -- 0.000132185 seconds elapsed
 -- 0.000055591 seconds elapsed
 -- 0.000469739 seconds elapsed
 -- 0.000138214 seconds elapsed
 -- 0.000053283 seconds elapsed
 -- 0.000541238 seconds elapsed
 -- 0.000152145 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000054838 seconds elapsed
 -- 0.000569145 seconds elapsed
 -- 0.000140224 seconds elapsed
 -- 0.000054635 seconds elapsed
 -- 0.000520861 seconds elapsed
 -- 0.000132447 seconds elapsed
 -- 0.000067039 seconds elapsed
 -- 0.000518036 seconds elapsed
 -- 0.000142328 seconds elapsed
 -- 0.000056981 seconds elapsed
 -- 0.000483209 seconds elapsed
 -- 0.000135872 seconds elapsed
 -- 0.000056195 seconds elapsed
 -- 0.00047657 seconds elapsed
 -- 0.000134304 seconds elapsed
 -- 0.000057422 seconds elapsed
 -- 0.000524073 seconds elapsed
 -- 0.000145511 seconds elapsed
 -- 0.000064464 seconds elapsed
 -- 0.000585401 seconds elapsed
 -- 0.000142889 seconds elapsed
 -- 0.000057121 seconds elapsed
 -- 0.000532438 seconds elapsed
 -- 0.00013385 seconds elapsed
 -- 0.000061017 seconds elapsed
 -- 0.000511333 seconds elapsed
 -- 0.000140808 seconds elapsed
 -- 0.000056181 seconds elapsed
 -- 0.000484047 seconds elapsed
 -- 0.000133425 seconds elapsed
 -- 0.000067005 seconds elapsed
 -- 0.000625752 seconds elapsed
 -- 0.000169239 seconds elapsed
 -- 0.000057579 seconds elapsed
 -- 0.000515473 seconds elapsed
 -- 0.000132251 seconds elapsed
 -- 0.000059446 seconds elapsed
 -- 0.000747832 seconds elapsed
 -- 0.000215836 seconds elapsed
 -- 0.000055496 seconds elapsed
 -- 0.000731848 seconds elapsed
 -- 0.000222741 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.