My Project
machine_learning/perceptron.cpp
/*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <arrayfire.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <af/util.h>
#include <math.h>
#include "mnist_common.h"
using namespace af;
float accuracy(const array& predicted, const array& target)
{
array val, plabels, tlabels;
max(val, tlabels, target, 1);
max(val, plabels, predicted, 1);
return 100 * count<float>(plabels == tlabels) / tlabels.elements();
}
// Predict based on given parameters
array predict(const array &X, const array &Weights)
{
return sigmoid(matmul(X, Weights));
}
array train(const array &X, const array &Y,
double alpha = 0.1,
double maxerr = 0.05,
int maxiter = 1000, bool verbose = false)
{
// Initialize parameters to 0
array Weights = constant(0, X.dims(1), Y.dims(1));
for (int i = 0; i < maxiter; i++) {
array P = predict(X, Weights);
array err = Y - P;
float mean_abs_err = mean<float>(abs(err));
if (mean_abs_err < maxerr) break;
if (verbose && (i + 1) % 25 == 0) {
printf("Iter: %d, Err: %.4f\n", i + 1, mean_abs_err);
}
Weights = Weights + alpha * matmulTN(X, err);
}
return Weights;
}
void benchmark_perceptron(const array &train_feats,
const array &train_targets,
const array test_feats)
{
timer::start();
array Weights = train(train_feats, train_targets, 0.1, 0.01, 1000);
printf("Training time: %4.4lf s\n", timer::stop());
timer::start();
const int iter = 100;
for (int i = 0; i < iter; i++) {
array test_outputs = predict(test_feats , Weights);
test_outputs.eval();
}
printf("Prediction time: %4.4lf s\n", timer::stop() / iter);
}
// Demo of one vs all logistic regression
int perceptron_demo(bool console, int perc)
{
array train_images, train_targets;
array test_images, test_targets;
int num_train, num_test, num_classes;
// Load mnist data
float frac = (float)(perc) / 100.0;
setup_mnist<true>(&num_classes, &num_train, &num_test,
train_images, test_images,
train_targets, test_targets, frac);
// Reshape images into feature vectors
int feature_length = train_images.elements() / num_train;
array train_feats = moddims(train_images, feature_length, num_train).T();
array test_feats = moddims(test_images , feature_length, num_test ).T();
train_targets = train_targets.T();
test_targets = test_targets.T();
// Add a bias that is always 1
train_feats = join(1, constant(1, num_train, 1), train_feats);
test_feats = join(1, constant(1, num_test , 1), test_feats );
// Train logistic regression parameters
array Weights = train(train_feats, train_targets, 0.1, 0.01, 1000, true);
// Predict the results
array train_outputs = predict(train_feats, Weights);
array test_outputs = predict(test_feats , Weights);
printf("Accuracy on training data: %2.2f\n",
accuracy(train_outputs, train_targets ));
printf("Accuracy on testing data: %2.2f\n",
accuracy(test_outputs , test_targets ));
benchmark_perceptron(train_feats, train_targets, test_feats);
if (!console) {
test_outputs = test_outputs.T();
test_targets = test_targets.T();
// Get 20 random test images.
display_results<true>(test_images, test_outputs, test_targets, 20);
}
return 0;
}
int main(int argc, char** argv)
{
int device = argc > 1 ? atoi(argv[1]) : 0;
bool console = argc > 2 ? argv[2][0] == '-' : false;
int perc = argc > 3 ? atoi(argv[3]) : 60;
try {
af::setDevice(device);
return perceptron_demo(console, perc);
} catch (af::exception &ae) {
std::cerr << ae.what() << std::endl;
}
return 0;
}
A multi dimensional data container.
Definition array.h:27
Definition exception.h:20
virtual const char * what() const
Definition exception.h:34
AFAPI array abs(const array &in)
C++ Interface for absolute value.
AFAPI array matmulTN(const array &lhs, const array &rhs)
Matrix multiply of two arrays.
array constant(T val, const dim4 &dims, const dtype ty=(af_dtype) dtype_traits< T >::ctype)
AFAPI void info()
AFAPI void setDevice(const int device)
Sets the current device.
AFAPI void sync(const int device=-1)
Blocks until the device is finished processing.
AFAPI array join(const int dim, const array &first, const array &second)
Join 2 arrays along dim.
AFAPI array moddims(const array &in, const unsigned ndims, const dim_t *const dims)
dim4 dims() const
Get dimensions of the array.
void eval() const
Evaluate any JIT expressions to generate data for the array.
array T() const
Get the transposed the array.
dim_t elements() const
get the number of elements in array
Definition algorithm.h:15