OpenJPH
Open-source implementation of JPEG2000 Part-15
Loading...
Searching...
No Matches
ojph_img_io_avx2.cpp
Go to the documentation of this file.
1//***************************************************************************/
2// This software is released under the 2-Clause BSD license, included
3// below.
4//
5// Copyright (c) 2019, Aous Naman
6// Copyright (c) 2019, Kakadu Software Pty Ltd, Australia
7// Copyright (c) 2019, The University of New South Wales, Australia
8//
9// Redistribution and use in source and binary forms, with or without
10// modification, are permitted provided that the following conditions are
11// met:
12//
13// 1. Redistributions of source code must retain the above copyright
14// notice, this list of conditions and the following disclaimer.
15//
16// 2. Redistributions in binary form must reproduce the above copyright
17// notice, this list of conditions and the following disclaimer in the
18// documentation and/or other materials provided with the distribution.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
23// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
26// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31//***************************************************************************/
32// This file is part of the OpenJPH software implementation.
33// File: ojph_img_io_avx2.cpp
34// Author: Aous Naman
35// Date: 23 May 2022
36//***************************************************************************/
37
38
39#include <cstdlib>
40#include <cstring>
41#include <immintrin.h>
42
43#include "ojph_file.h"
44#include "ojph_img_io.h"
45#include "ojph_mem.h"
46#include "ojph_message.h"
47
48namespace ojph {
49
51 static
52 ui16 be2le(const ui16 v)
53 {
54 return (ui16)((v<<8) | (v>>8));
55 }
56
58 void avx2_cvrt_32b1c_to_8ub1c(const line_buf *ln0, const line_buf *ln1,
59 const line_buf *ln2, void *dp,
60 int bit_depth, int count)
61 {
62 ojph_unused(ln1);
63 ojph_unused(ln2);
64
65 __m256i max_val_vec = _mm256_set1_epi32((1 << bit_depth) - 1);
66 __m256i zero = _mm256_setzero_si256();
67 __m256i mask = _mm256_set_epi64x(0x0F0B07030E0A0602, 0x0D0905010C080400,
68 0x0F0B07030E0A0602, 0x0D0905010C080400);
69 const si32 *sp = ln0->i32;
70 ui8* p = (ui8 *)dp;
71
72 // 32 bytes or entries in each loop
73 for ( ; count >= 32; count -= 32, sp += 32, p += 32)
74 {
75 __m256i a, t, u, v0, v1;
76 a = _mm256_load_si256((__m256i*)sp);
77 a = _mm256_max_epi32(a, zero);
78 t = _mm256_min_epi32(a, max_val_vec);
79
80 a = _mm256_load_si256((__m256i*)sp + 1);
81 a = _mm256_max_epi32(a, zero);
82 a = _mm256_min_epi32(a, max_val_vec);
83 a = _mm256_slli_epi32(a, 16);
84 t = _mm256_or_si256(t, a);
85
86 a = _mm256_load_si256((__m256i*)sp + 2);
87 a = _mm256_max_epi32(a, zero);
88 u = _mm256_min_epi32(a, max_val_vec);
89
90 a = _mm256_load_si256((__m256i*)sp + 3);
91 a = _mm256_max_epi32(a, zero);
92 a = _mm256_min_epi32(a, max_val_vec);
93 a = _mm256_slli_epi32(a, 16);
94 u = _mm256_or_si256(u, a);
95
96 v0 = _mm256_permute2x128_si256(t, u, 0x20);
97 v1 = _mm256_permute2x128_si256(t, u, 0x31);
98 v1 = _mm256_slli_epi32(v1, 8);
99 v0 = _mm256_or_si256(v0, v1);
100
101 v0 = _mm256_shuffle_epi8(v0, mask);
102 _mm256_storeu_si256((__m256i*)p, v0);
103 }
104
105 int max_val = (1 << bit_depth) - 1;
106 for ( ; count > 0; --count)
107 {
108 int val = *sp++;
109 val = val >= 0 ? val : 0;
110 val = val <= max_val ? val : max_val;
111 *p++ = (ui8)val;
112 }
113 }
114
116 void avx2_cvrt_32b3c_to_8ub3c(const line_buf *ln0, const line_buf *ln1,
117 const line_buf *ln2, void *dp,
118 int bit_depth, int count)
119 {
120 const si32 *sp0 = ln0->i32;
121 const si32 *sp1 = ln1->i32;
122 const si32 *sp2 = ln2->i32;
123 ui8* p = (ui8 *)dp;
124
125 __m256i max_val_vec = _mm256_set1_epi32((1 << bit_depth) - 1);
126 __m256i zero = _mm256_setzero_si256();
127 __m256i m0 = _mm256_set_epi64x(0xFFFFFFFF0E0D0C0A, 0x0908060504020100,
128 0xFFFFFFFF0E0D0C0A, 0x0908060504020100);
129
130 // 32 entries or entries in each loop
131 for ( ; count >= 32; count -= 32, sp0 += 32, sp1 += 32, sp2 += 32, p += 96)
132 {
133 __m256i a, t, u, v, w;
134 a = _mm256_load_si256((__m256i*)sp0);
135 a = _mm256_max_epi32(a, zero);
136 t = _mm256_min_epi32(a, max_val_vec);
137
138 a = _mm256_load_si256((__m256i*)sp1);
139 a = _mm256_max_epi32(a, zero);
140 a = _mm256_min_epi32(a, max_val_vec);
141 a = _mm256_slli_epi32(a, 8);
142 t = _mm256_or_si256(t, a);
143
144 a = _mm256_load_si256((__m256i*)sp2);
145 a = _mm256_max_epi32(a, zero);
146 a = _mm256_min_epi32(a, max_val_vec);
147 a = _mm256_slli_epi32(a, 16);
148 t = _mm256_or_si256(t, a);
149 t = _mm256_shuffle_epi8(t, m0);
150
151
152 a = _mm256_load_si256((__m256i*)sp0 + 1);
153 a = _mm256_max_epi32(a, zero);
154 u = _mm256_min_epi32(a, max_val_vec);
155
156 a = _mm256_load_si256((__m256i*)sp1 + 1);
157 a = _mm256_max_epi32(a, zero);
158 a = _mm256_min_epi32(a, max_val_vec);
159 a = _mm256_slli_epi32(a, 8);
160 u = _mm256_or_si256(u, a);
161
162 a = _mm256_load_si256((__m256i*)sp2 + 1);
163 a = _mm256_max_epi32(a, zero);
164 a = _mm256_min_epi32(a, max_val_vec);
165 a = _mm256_slli_epi32(a, 16);
166 u = _mm256_or_si256(u, a);
167 u = _mm256_shuffle_epi8(u, m0);
168
169
170 a = _mm256_load_si256((__m256i*)sp0 + 2);
171 a = _mm256_max_epi32(a, zero);
172 v = _mm256_min_epi32(a, max_val_vec);
173
174 a = _mm256_load_si256((__m256i*)sp1 + 2);
175 a = _mm256_max_epi32(a, zero);
176 a = _mm256_min_epi32(a, max_val_vec);
177 a = _mm256_slli_epi32(a, 8);
178 v = _mm256_or_si256(v, a);
179
180 a = _mm256_load_si256((__m256i*)sp2 + 2);
181 a = _mm256_max_epi32(a, zero);
182 a = _mm256_min_epi32(a, max_val_vec);
183 a = _mm256_slli_epi32(a, 16);
184 v = _mm256_or_si256(v, a);
185 v = _mm256_shuffle_epi8(v, m0);
186
187
188 a = _mm256_load_si256((__m256i*)sp0 + 3);
189 a = _mm256_max_epi32(a, zero);
190 w = _mm256_min_epi32(a, max_val_vec);
191
192 a = _mm256_load_si256((__m256i*)sp1 + 3);
193 a = _mm256_max_epi32(a, zero);
194 a = _mm256_min_epi32(a, max_val_vec);
195 a = _mm256_slli_epi32(a, 8);
196 w = _mm256_or_si256(w, a);
197
198 a = _mm256_load_si256((__m256i*)sp2 + 3);
199 a = _mm256_max_epi32(a, zero);
200 a = _mm256_min_epi32(a, max_val_vec);
201 a = _mm256_slli_epi32(a, 16);
202 w = _mm256_or_si256(w, a);
203 w = _mm256_shuffle_epi8(w, m0);
204
205 _mm_storeu_si128((__m128i*)(p ), _mm256_castsi256_si128(t));
206 _mm_storeu_si128((__m128i*)(p + 12), _mm256_extracti128_si256(t, 1));
207 _mm_storeu_si128((__m128i*)(p + 24), _mm256_castsi256_si128(u));
208 _mm_storeu_si128((__m128i*)(p + 36), _mm256_extracti128_si256(u, 1));
209 _mm_storeu_si128((__m128i*)(p + 48), _mm256_castsi256_si128(v));
210 _mm_storeu_si128((__m128i*)(p + 60), _mm256_extracti128_si256(v, 1));
211 _mm_storeu_si128((__m128i*)(p + 72), _mm256_castsi256_si128(w));
212 _mm_storeu_si128((__m128i*)(p + 84), _mm256_extracti128_si256(w, 1));
213 }
214
215 int max_val = (1<<bit_depth) - 1;
216 for ( ; count > 0; --count)
217 {
218 int val;
219 val = *sp0++;
220 val = val >= 0 ? val : 0;
221 val = val <= max_val ? val : max_val;
222 *p++ = (ui8) val;
223 val = *sp1++;
224 val = val >= 0 ? val : 0;
225 val = val <= max_val ? val : max_val;
226 *p++ = (ui8) val;
227 val = *sp2++;
228 val = val >= 0 ? val : 0;
229 val = val <= max_val ? val : max_val;
230 *p++ = (ui8) val;
231 }
232 }
233
235 void avx2_cvrt_32b1c_to_16ub1c_le(const line_buf *ln0, const line_buf *ln1,
236 const line_buf *ln2, void *dp,
237 int bit_depth, int count)
238 {
239 ojph_unused(ln1);
240 ojph_unused(ln2);
241
242 __m256i max_val_vec = _mm256_set1_epi32((1 << bit_depth) - 1);
243 __m256i zero = _mm256_setzero_si256();
244 __m256i mask = _mm256_set_epi64x(0x0F0E0B0A07060302, 0x0D0C090805040100,
245 0x0F0E0B0A07060302, 0x0D0C090805040100);
246 const si32 *sp = ln0->i32;
247 ui16* p = (ui16 *)dp;
248
249 // 16 entries in each loop
250 for ( ; count >= 16; count -= 16, sp += 16, p += 16)
251 {
252 __m256i a, t;
253 a = _mm256_load_si256((__m256i*)sp);
254 a = _mm256_max_epi32(a, zero);
255 t = _mm256_min_epi32(a, max_val_vec);
256
257 a = _mm256_load_si256((__m256i*)sp + 1);
258 a = _mm256_max_epi32(a, zero);
259 a = _mm256_min_epi32(a, max_val_vec);
260 a = _mm256_slli_epi32(a, 16);
261 t = _mm256_or_si256(t, a);
262
263 t = _mm256_shuffle_epi8(t, mask);
264 t = _mm256_permute4x64_epi64(t, 0xD8);
265 _mm256_storeu_si256((__m256i*)p, t);
266 }
267
268 int max_val = (1<<bit_depth) - 1;
269 for ( ; count > 0; --count)
270 {
271 int val = *sp++;
272 val = val >= 0 ? val : 0;
273 val = val <= max_val ? val : max_val;
274 *p++ = (ui16) val;
275 }
276 }
277
279 void avx2_cvrt_32b1c_to_16ub1c_be(const line_buf *ln0, const line_buf *ln1,
280 const line_buf *ln2, void *dp,
281 int bit_depth, int count)
282 {
283 ojph_unused(ln1);
284 ojph_unused(ln2);
285
286 __m256i max_val_vec = _mm256_set1_epi32((1 << bit_depth) - 1);
287 __m256i zero = _mm256_setzero_si256();
288 __m256i mask = _mm256_set_epi64x(0x0E0F0A0B06070203, 0x0C0D080904050001,
289 0x0E0F0A0B06070203, 0x0C0D080904050001);
290 const si32 *sp = ln0->i32;
291 ui16* p = (ui16 *)dp;
292
293 // 16 entries in each loop
294 for ( ; count >= 16; count -= 16, sp += 16, p += 16)
295 {
296 __m256i a, t;
297 a = _mm256_load_si256((__m256i*)sp);
298 a = _mm256_max_epi32(a, zero);
299 t = _mm256_min_epi32(a, max_val_vec);
300
301 a = _mm256_load_si256((__m256i*)sp + 1);
302 a = _mm256_max_epi32(a, zero);
303 a = _mm256_min_epi32(a, max_val_vec);
304 a = _mm256_slli_epi32(a, 16);
305 t = _mm256_or_si256(t, a);
306
307 t = _mm256_shuffle_epi8(t, mask);
308 t = _mm256_permute4x64_epi64(t, 0xD8);
309 _mm256_storeu_si256((__m256i*)p, t);
310 }
311
312 int max_val = (1<<bit_depth) - 1;
313 for ( ; count > 0; --count)
314 {
315 int val = *sp++;
316 val = val >= 0 ? val : 0;
317 val = val <= max_val ? val : max_val;
318 *p++ = be2le((ui16) val);
319 }
320 }
321}
void avx2_cvrt_32b1c_to_8ub1c(const line_buf *ln0, const line_buf *ln1, const line_buf *ln2, void *dp, int bit_depth, int count)
void avx2_cvrt_32b3c_to_8ub3c(const line_buf *ln0, const line_buf *ln1, const line_buf *ln2, void *dp, int bit_depth, int count)
uint16_t ui16
Definition ojph_defs.h:52
static ui16 be2le(const ui16 v)
int32_t si32
Definition ojph_defs.h:55
void avx2_cvrt_32b1c_to_16ub1c_be(const line_buf *ln0, const line_buf *ln1, const line_buf *ln2, void *dp, int bit_depth, int count)
uint8_t ui8
Definition ojph_defs.h:50
void avx2_cvrt_32b1c_to_16ub1c_le(const line_buf *ln0, const line_buf *ln1, const line_buf *ln2, void *dp, int bit_depth, int count)
#define ojph_unused(x)
Definition ojph_defs.h:78